def forward(self, V):
		self.in_act = V 

		## We shall use the technique of im2Col as detailed in the notes for the course 
		## CS231n. However, there are still speed-ups to be had if we could link 
		## numpy with the BLAS Library 

		A = Vol(self.out_sx, self.out_sy, self.out_depth, 0.0)
		input_vol = V.w 
		input_vol = input_vol.reshape(V.depth, V.sx, V.sy)

		inputim2col = im2col(input_vol, [self.filter_sx, self.filter_sy], self.stride)

		##Create the filter matrix 
		filtercol = np.zeros((self.out_depth,self.filter_sx*self.filter_sy*self.in_depth))
		for i in xrange(self.out_depth):
			filtercol[i] = self.filters[i].w.flatten()
		##Perform the convolution step 

		convolve = np.dot(filtercol, inputim2col)
		##Adding biases 
		##Could be done in a neater fashion
		for i in xrange(self.out_depth):
			convolve[i] += self.biases.w[i]
		A.w = convolve.flatten()
		self.out_act = A 
		return self.out_act
 def setUp(self):
     # Vols
     self.paris_newyork = Vol("Paris CDG", "New York", 6000, 500)
     self.paris_hongkong = Vol("Paris CDG", "Hong Kong", 9620, 200)
     # Avions disponible
     self.airbus_a350 = Avion()
     self.hawker_siddley_748 = Avion(reservoir=4000,
                                     nb_passenger=48,
                                     poids=21)
     self.boeing_737_max = Avion(reservoir=150000,
                                 nb_passenger=120,
                                 poids=118)
     self.boeing_737_max_2 = Avion(reservoir=150000,
                                   nb_passenger=140,
                                   poids=118)
	def forward(self, V):
		"""
		Performs the forward pass. 
		Straightforward implementation since every neuron connected 
		to every neuron in the previous layer 
		"""

		self.in_act = V

		input_weights = V.w 

		output = Vol(1,1,self.out_depth, 0.0)

		for i in xrange(self.out_depth):
			a = 0.0
			filter_weights = self.filters[i].w
			# a = np.dot(input_weights, filter_weights) + self.biases.w[i]
			for d in xrange(self.num_inputs):
				a  += input_weights[d] * filter_weights[d]
			a += self.biases.w[i]
			output.w[i] = a
		self.out_act = output
		return self.out_act 
	def forward(self, V):
		self.in_act = V

		V2 = Vol(1,1,self.out_depth, 0.0)

		##To prevent the exponentials from exploding, 
		##we follow the advice from the CS231n 
		##by subtracting the maximum weight 
		##thereby making the calculation stable 
		
		V2_weights = V.w

		max_weight = np.amax(V2_weights)

		exponentials = np.exp(V2_weights - max_weight)
		denom = np.sum(exponentials)

		exponentials /= denom 

		V2.w = exponentials
		##We will use the exponentials for backprop
		self.exponentials = exponentials 
		self.out_act = V2 
		return self.out_act 
Example #5
0
def step_given_vol(context, ville_depart, ville_arrivee, distance,
                   nb_max_passagers):
    context.vol = Vol(ville_depart, ville_arrivee, distance, nb_max_passagers)
class MyTestCase(unittest.TestCase):
    def setUp(self):
        # Vols
        self.paris_newyork = Vol("Paris CDG", "New York", 6000, 500)
        self.paris_hongkong = Vol("Paris CDG", "Hong Kong", 9620, 200)
        # Avions disponible
        self.airbus_a350 = Avion()
        self.hawker_siddley_748 = Avion(reservoir=4000,
                                        nb_passenger=48,
                                        poids=21)
        self.boeing_737_max = Avion(reservoir=150000,
                                    nb_passenger=120,
                                    poids=118)
        self.boeing_737_max_2 = Avion(reservoir=150000,
                                      nb_passenger=140,
                                      poids=118)

    def test_add_passenger(self):
        # Arrange
        self.airbus_a350.set_passenger(10)

        # Act
        self.airbus_a350.add_passenger(10)
        # Assert
        self.assertEqual(20, self.airbus_a350.get_passenger())

        # Act
        self.airbus_a350.add_passenger(15)
        # Assert
        self.assertEqual(35, self.airbus_a350.get_passenger())

    def test_calcul_consommer(self):
        # Arrange
        self.airbus_a350.set_passenger(150)
        self.airbus_a350.set_poids(118)
        self.airbus_a350.set_reservoir(10000)

        # Act
        self.airbus_a350.add_vol(self.paris_newyork)
        # Assert
        self.assertAlmostEqual(1330,
                               self.airbus_a350.calcul_consommation(),
                               places=0)

    def test_calcul_distance_avec_plusieurs_vols(self):
        # Arrange
        self.airbus_a350.set_passenger(150)
        self.airbus_a350.set_poids(118)
        self.airbus_a350.set_reservoir(150000)

        # Act
        self.airbus_a350.add_vol(self.paris_newyork)
        self.airbus_a350.add_vol(self.paris_hongkong)
        # Assert
        self.assertAlmostEqual(11278.195,
                               self.airbus_a350.calcul_distance(),
                               places=3)

    def test_crash_distance(self):
        # Arrange
        self.hawker_siddley_748.add_vol(self.paris_newyork)

        # Assert
        self.assertEqual(0, self.hawker_siddley_748.calcul_distance())

    def test_nb_passenger_autorise(self):
        # Arrange
        self.paris_newyork.add_avion(self.boeing_737_max)
        self.paris_newyork.add_avion(self.boeing_737_max_2)

        # Assert
        self.assertEqual(True, self.paris_newyork.is_max_passenger())

    def test_nb_passenger_autorise_depasse(self):
        # Arrange
        self.paris_hongkong.add_avion(self.boeing_737_max)
        self.paris_hongkong.add_avion(self.boeing_737_max_2)
        # Assert
        self.assertEqual(False, self.paris_hongkong.is_max_passenger())