if args.use_cuda: model.cuda() model.decoder.set_r(cp['r']) # load vocoder model if args.vocoder_path != "": VC = load_config(args.vocoder_config_path) ap_vocoder = AudioProcessor(**VC.audio) bits = 10 vocoder_model = VocoderModel(rnn_dims=512, fc_dims=512, mode=VC.mode, mulaw=VC.mulaw, pad=VC.pad, upsample_factors=VC.upsample_factors, feat_dims=VC.audio["num_mels"], compute_dims=128, res_out_dims=128, res_blocks=10, hop_length=ap.hop_length, sample_rate=ap.sample_rate, use_aux_net=True, use_upsample_net=True) check = torch.load(args.vocoder_path) vocoder_model.load_state_dict(check['model']) vocoder_model.eval() if args.use_cuda: vocoder_model.cuda() else: vocoder_model = None VC = None
model.cuda() model.decoder.set_r(cp['r']) # load vocoder model if args.vocoder_path != "": VC = load_config(args.vocoder_config_path) ap_vocoder = AudioProcessor(**VC.audio) if VC.bits is not None: vocoder_model = VocoderModel( rnn_dims=512, fc_dims=512, bits=VC.bits, pad=VC.pad, upsample_factors=VC.upsample_factors, # set this depending on dataset feat_dims=80, compute_dims=128, res_out_dims=128, res_blocks=10, hop_length=ap.hop_length, sample_rate=ap.sample_rate ) else: vocoder_model = VocoderModel( rnn_dims=512, fc_dims=512, mode=VC.mode, mulaw=VC.mulaw, pad=VC.pad, use_aux_net=VC.use_aux_net, use_upsample_net=VC.use_upsample_net,