Example #1
0
File: de.py Project: kb2623/WeOptPy
    def aging(self, task, pop):
        r"""Apply aging to individuals.

		Args:
			task (Task): Optimization task.
			pop (numpy.ndarray[Individual]): Current population.

		Returns:
			numpy.ndarray[Individual]: New population.
		"""
        fpop = np.asarray([x.f for x in pop])
        x_b, x_w = pop[np.argmin(fpop)], pop[np.argmax(fpop)]
        avg, npop = np.mean(fpop[fpop != np.inf]), []
        for x in pop:
            x.age += 1
            Lt = round(
                self.age(Lt_min=self.Lt_min,
                         Lt_max=self.Lt_max,
                         mu=self.mu,
                         x_f=x.f,
                         avg=avg,
                         x_gw=x_w.f,
                         x_gb=x_b.f))
            if x.age <= Lt: npop.append(x)
        if len(npop) == 0:
            npop = objects2array([
                self.itype(task=task, rnd=self.Rand, e=True)
                for _ in range(self.NP)
            ])
        return npop
Example #2
0
File: de.py Project: kb2623/WeOptPy
    def pop_increment(self, pop, task):
        r"""Increment population.

		Args:
			pop (numpy.ndarray): Current population.
			task (Task): Optimization task.

		Returns:
			numpy.ndarray: Increased population.
		"""
        deltapop = int(round(max(1, self.NP * self.delta_pop_e(task.Iters))))
        return objects2array([
            self.itype(task=task, rnd=self.Rand, e=True)
            for _ in range(deltapop)
        ])
Example #3
0
File: de.py Project: kb2623/WeOptPy
    def evolve(self, pop, xb, task, **kwargs):
        r"""Evolve population with the help multiple mutation strategies.

		Args:
			pop (numpy.ndarray): Current population.
			xb (numpy.ndarray): Current best individual.
			task (Task): Optimization task.
			kwargs (Dict[str, Any]): Additional arguments.

		Returns:
			numpy.ndarray: New population of individuals.
		"""
        return objects2array([
            self.CrossMutt(pop, i, xb, self.F, self.CR, self.Rand, task,
                           self.itype, self.strategies)
            for i in range(len(pop))
        ])
Example #4
0
File: de.py Project: kb2623/WeOptPy
    def pop_decrement(self, pop, task):
        r"""Decrement population.

		Args:
			pop (numpy.ndarray): Current population.
			task (Task): Optimization task.

		Returns:
			numpy.ndarray: Decreased population.
		"""
        deltapop = int(round(max(1, self.NP * self.delta_pop_c(task.Iters))))
        if len(pop) - deltapop <= 0: return pop
        ni = self.Rand.choice(len(pop), deltapop, replace=False)
        npop = []
        for i, e in enumerate(pop):
            if i not in ni: npop.append(e)
            elif self.rand() >= self.omega: npop.append(e)
        return objects2array(npop)
Example #5
0
    def evolve(self, pop, xb, task, **ukwargs):
        r"""Evolve current population.

		Args:
			pop (numpy.ndarray[Individual]): Current population.
			xb (Individual): Global best individual.
			task (Task): Optimization task.
			ukwargs (Dict[str, Any]): Additional arguments.

		Returns:
			numpy.ndarray: New population.
		"""
        npop = objects2array([self.AdaptiveGen(e) for e in pop])
        for i, e in enumerate(npop):
            npop[i].x = self.CrossMutt(npop, i, xb, e.F, e.CR, rnd=self.Rand)
        for e in npop:
            e.evaluate(task, rnd=self.rand)
        return npop
Example #6
0
def init_pop_individual(task, n, itype, **kwargs):
    r"""Custom population initialization function for numpy individual type.

	Args:
		task (Task): Optimization task.
		n (int): Population size.
		itype (Individual): Type of individual in population.
		kwargs (Dict[str, Any]): Additional arguments.

	Returns:
		Tuple[numpy.ndarray, numpy.ndarray, list, dict):
			1. Initialized population.
			2. Initialized populations fitness/function values.
			3. Additional arguments.
			4. Additional keyword arguments.
	"""
    pop = objects2array(
        [itype(x=np.full(task.D, 0.0), task=task) for _ in range(n)])
    return pop, np.asarray([x.f for x in pop]), [], {}
Example #7
0
File: de.py Project: kb2623/WeOptPy
    def evolve(self, pop, xb, task, **kwargs):
        r"""Evolve population.

		Arg:
			pop (numpy.ndarray): Current population.
			xb (Individual): Current best individual.
			task (Task): Optimization task.
			kwargs (Dict[str, Any]): Additional arguments.

		Returns:
			numpy.ndarray: New evolved populations.
		"""
        return objects2array([
            self.itype(x=self.CrossMutt(pop, i, xb, self.F, self.CR,
                                        self.Rand),
                       task=task,
                       rnd=self.Rand,
                       e=True) for i in range(len(pop))
        ])
Example #8
0
File: de.py Project: kb2623/WeOptPy
    def selection(self, pop, npop, xb, fxb, task, **kwargs):
        r"""Operator for selection.

		Args:
			pop (numpy.ndarray): Current population.
			npop (numpy.ndarray): New Population.
			xb (numpy.ndarray): Current global best solution.
			fxb (float): Current global best solutions fitness/objective value.
			task (Task): Optimization task.
			kwargs (Dict[str, Any]): Additional arguments.

		Returns:
			Tuple[numpy.ndarray, numpy.ndarray, float]:
				1. New selected individuals.
				2. New global best solution.
				3. New global best solutions fitness/objective value.
		"""
        arr = objects2array(
            [e if e.f < pop[i].f else pop[i] for i, e in enumerate(npop)])
        xb, fxb = self.get_best(arr, np.asarray([e.f for e in arr]), xb, fxb)
        return arr, xb, fxb
Example #9
0
File: de.py Project: kb2623/WeOptPy
    def post_selection(self, pop, task, xb, fxb, **kwargs):
        r"""Post selection operator.

		In this algorithm the post selection operator decrements the population at specific iterations/generations.

		Args:
			pop (numpy.ndarray): Current population.
			task (Task): Optimization task.
			kwargs (Dict[str, Any]): Additional arguments.

		Returns:
			Tuple[numpy.ndarray, numpy.ndarray, float]:
				1. Changed current population.
				2. New global best solution.
				3. New global best solutions fitness/objective value.
		"""
        Gr = task.nFES // (self.pmax * len(pop)) + self.rp
        nNP = len(pop) // 2
        if task.Iters == Gr and len(pop) > 3:
            pop = objects2array([
                pop[i] if pop[i].f < pop[i + nNP].f else pop[i + nNP]
                for i in range(nNP)
            ])
        return pop, xb, fxb