wire = wire.load(top_dir + "0.02mbar_air_em_{}\\".format(emissivity) + "results\\" + run_name) #l_beam = wire.l_beam U_beam_off = wire.U_wire(0) U_beam_on = wire.U_wire(-1) U_delta = U_arr[n_i] = U_beam_on - U_beam_off signal = signal_arr[n_i] = U_delta / U_beam_off T_max = T_max_arr[n_i] = np.amax( wire.record_dict["T_distribution"][-1]) T_avg = T_avg_arr[n_i] = np.average( wire.record_dict["T_distribution"][-1]) R_arr[n_i] = wire.resistance_total() U_arr_full[n_lw] = U_arr signal_arr_full[n_lw] = signal_arr # Integrated power graph if True: # Populate arrays func_list = [ "f_el", "f_conduction", "f_rad" #, "f_beam", "f_beam_gas", "f_bb" , "f_background_gas" #, "f_laser" ]
plt.figure(0, figsize=(8, 6.5)) ax1 = plt.gca() ax1.set_aspect(0.1) x_lst = [ 1000 * ((i + 0.5) * wire.l_segment - (wire.l_wire / 2)) for i in range(wire.n_wire_elements) ] T_beam_off = wire.record_dict["T_distribution"][0] T_beam_on = wire.record_dict["T_distribution"][-1] T_lst = [T_beam_off, T_beam_on] R_arr = np.zeros(2) for i, T_dist in enumerate(T_lst): wire.T_distribution = T_dist R_arr[i] = wire.resistance_total() U_delta = (R_arr[1] - R_arr[0]) * wire.i_current signal = (R_arr[1] - R_arr[0]) / R_arr[0] ax1.plot(x_lst, T_lst[0] - 273.15, "-", label=r"Beam Off, " + "R = {:.3f}".format(R_arr[0]) + r"$\Omega$") ax1.plot(x_lst, T_lst[1] - 273.15, "-", label=r"Beam On, " + "R = {:.3f}".format(R_arr[1]) + r"$\Omega$") ax1.set_ylabel("Temperature [°C]") ax1.set_xlabel(r"wire positon [mm]")