class InputNeuron(object): def __init__(self, neuron_id = None): Neuron.__init__(self) self.__id = neuron_id self.__local.append(0) self.__output.append(0) def __accumulate(self, *argin): self.__local[0] = argin[0] def __activate(self): self.__output[0] = self.__local[0] def probagate(self, *argin): self.__accumulate(*argin) self.__activate() return self.__output[0] def neuronId(): return self.__id def local(self): return self.__local def output(self): return self.__output Neuron.register(InputNeuron)
self.__local[i] = self.__local[i+1] self.__local[-1] = sum(argin) def __activate(self): if not len(self.__local): return output = 0.0 if self.activate_mode == 'Logistic': output = 1.0 / (1.0 + exp(-self.__local[-1])) for i in range(self.__num - 1): self.__output[i] = self.__output[i+1] self.__output[-1] = output def probagate(self, *argin): self.__accumulate(*argin) self.__activate() return self.__output[-1] def neuronId(): return self.__id def local(self): return self.__local def output(self): return self.__output Neuron.register(Perceptron)
class InputNeuron(object): def __init__(self, neuron_id=None): Neuron.__init__(self) self.__id = neuron_id self.__local.append(0) self.__output.append(0) def __accumulate(self, *argin): self.__local[0] = argin[0] def __activate(self): self.__output[0] = self.__local[0] def probagate(self, *argin): self.__accumulate(*argin) self.__activate() return self.__output[0] def neuronId(): return self.__id def local(self): return self.__local def output(self): return self.__output Neuron.register(InputNeuron)