Example #1
0
 def residual(x, y):
     c = []
     for j in xrange(len(x)):
         cur_c = []
         for i in xrange(len(x[j])):
             cur_x = x[j][i]
             cur_y = y[j][i]
             cur_c.append(math.fabs(g([cur_x, cur_y]) - 
                                    resulting_nn([cur_x, cur_y])))
         c.append(cur_c)
     return c
Example #2
0
def generate_report(l, t_start, t_end):
    def residual(x, y):
        c = []
        for j in xrange(len(x)):
            cur_c = []
            for i in xrange(len(x[j])):
                cur_x = x[j][i]
                cur_y = y[j][i]
                cur_c.append(math.fabs(g([cur_x, cur_y]) - 
                                       resulting_nn([cur_x, cur_y])))
            c.append(cur_c)
        return c
    folder = join(report_dir, str(time()))
    mkdir(folder)

    resulting_nn = network_from_list(l)
    sqrt_err = make_quad_estimate(resulting_nn, g, 0, 0, 1, 1, 0.01, 0.01)
    
    file = open(join(folder, "Report.txt"), "w")
    file.write((u"""Solution is complete
    %s neurons
    Complex Box
    f = x + y
    %s point in area
    %s points on border
    delta = %s
    J = %s
    sqrt_estimate = %s
    Time taken: %s

""" % (neurons, len(inner), len(border), delta, 
                         J(f, g, inner, border,resulting_nn),
                         sqrt_err, t_end - t_start)).encode("utf-8"))

    file.write("(")
    for i in xrange(neurons):
        ns = 2 + dimensions
        file.write("(%s)*exp(-(((%s)-x)^2+((%s)-y)^2)/((%s)^2))+" % (l[ns * i], 
                                l[ns * i + 2], l[ns * i + 3], l[ns * i + 1]))
    file.write("0)\n")
    file.close
    neuro.draw.draw(resulting_nn, (-3.0, -3.0, 7.0, 7.0), (0.0, 0.0, 1.0, 1.0), 
                    join(folder, "cfg.png"))

    dx, dy = 0.005, 0.005
    ax = arange(0, 1.0001, dx)
    ay = arange(0.0, 1.0001, dy)
    X, Y = meshgrid(ax, ay)
    
    Z = residual(X, Y)
    figure(5)
    pcolor(X, Y, Z)
    colorbar()
    axis([0,1,0,1])
    savefig(join(folder, "overall.png"))

    for c_y in xrange(3):
        y = c_y * 0.5
        xs = [0.01*x for x in range(100)]
        ys = [resulting_nn([x, y]) for x in xs]
        zs = [g([x, y]) for x in xs]
        figure(c_y)
        xlabel('$x$')
        ylabel('$y$')
        title(ur'Погрешность полученного решения в сечении $y = %.1f$' % y)
        plot(xs, ys, label=ur'полученное решение', color='red')    
        plot(xs, zs, label=ur'точное решение', color='green')    
        legend(loc='upper right')
        savefig(join(folder, "сечение y=%s.png" % y))
        
    for c_x in xrange(3):
        x = c_x * 0.5
        ys = [0.01*y for y in range(100)]
        xs = [resulting_nn([x, y]) for y in ys]
        zs = [g([x, y]) for y in ys]
        figure(c_x + 100)
        xlabel('$x$')
        ylabel('$y$')
        title(ur'Погрешность полученного решения в сечении $x = %.1f$' % x)
        plot(ys, xs, label=ur'полученное решение', color='red')    
        plot(ys, zs, label=ur'точное решение', color='green')    
        legend(loc='upper right')
        savefig(join(folder, "сечение x=%s.png" % x))