Example #1
0
    def reset(self):
        """Clear collected data, and prepare to collect more."""
        # A dictionary mapping filenames to dicts with line number keys,
        # or mapping filenames to dicts with line number pairs as keys.
        self.data = {}

        self.plugin_data = {}

        # A cache of the results from should_trace, the decision about whether
        # to trace execution in a file. A dict of filename to (filename or
        # None).
        if env.PYPY:
            import __pypy__  # pylint: disable=import-error
            # Alex Gaynor said:
            # should_trace_cache is a strictly growing key: once a key is in
            # it, it never changes.  Further, the keys used to access it are
            # generally constant, given sufficient context. That is to say, at
            # any given point _trace() is called, pypy is able to know the key.
            # This is because the key is determined by the physical source code
            # line, and that's invariant with the call site.
            #
            # This property of a dict with immutable keys, combined with
            # call-site-constant keys is a match for PyPy's module dict,
            # which is optimized for such workloads.
            #
            # This gives a 20% benefit on the workload described at
            # https://bitbucket.org/pypy/pypy/issue/1871/10x-slower-than-cpython-under-coverage
            self.should_trace_cache = __pypy__.newdict("module")
        else:
            self.should_trace_cache = {}

        # Our active Tracers.
        self.tracers = []
Example #2
0
    def reset(self):
        """Clear collected data, and prepare to collect more."""
        # A dictionary mapping filenames to dicts with line number keys,
        # or mapping filenames to dicts with line number pairs as keys.
        self.data = {}

        self.plugin_data = {}

        # A cache of the results from should_trace, the decision about whether
        # to trace execution in a file. A dict of filename to (filename or
        # None).
        if env.PYPY:
            import __pypy__                     # pylint: disable=import-error
            # Alex Gaynor said:
            # should_trace_cache is a strictly growing key: once a key is in
            # it, it never changes.  Further, the keys used to access it are
            # generally constant, given sufficient context. That is to say, at
            # any given point _trace() is called, pypy is able to know the key.
            # This is because the key is determined by the physical source code
            # line, and that's invariant with the call site.
            #
            # This property of a dict with immutable keys, combined with
            # call-site-constant keys is a match for PyPy's module dict,
            # which is optimized for such workloads.
            #
            # This gives a 20% benefit on the workload described at
            # https://bitbucket.org/pypy/pypy/issue/1871/10x-slower-than-cpython-under-coverage
            self.should_trace_cache = __pypy__.newdict("module")
        else:
            self.should_trace_cache = {}

        # Our active Tracers.
        self.tracers = []
Example #3
0
    def test_bug_materialize_huge_dict(self):
        import __pypy__
        d = __pypy__.newdict("instance")
        for i in range(100):
            d[str(i)] = i
        assert len(d) == 100

        for key in d:
            assert d[key] == int(key)
Example #4
0
    def reset(self):
        """Clear collected data, and prepare to collect more."""
        # A dictionary mapping file names to dicts with line number keys (if not
        # branch coverage), or mapping file names to dicts with line number
        # pairs as keys (if branch coverage).
        self.data = {}

        # A dict mapping contexts to data dictionaries.
        self.contexts = {}
        self.contexts[None] = self.data

        # A dictionary mapping file names to file tracer plugin names that will
        # handle them.
        self.file_tracers = {}

        # The .should_trace_cache attribute is a cache from file names to
        # coverage.FileDisposition objects, or None.  When a file is first
        # considered for tracing, a FileDisposition is obtained from
        # Coverage.should_trace.  Its .trace attribute indicates whether the
        # file should be traced or not.  If it should be, a plugin with dynamic
        # file names can decide not to trace it based on the dynamic file name
        # being excluded by the inclusion rules, in which case the
        # FileDisposition will be replaced by None in the cache.
        if env.PYPY:
            import __pypy__  # pylint: disable=import-error
            # Alex Gaynor said:
            # should_trace_cache is a strictly growing key: once a key is in
            # it, it never changes.  Further, the keys used to access it are
            # generally constant, given sufficient context. That is to say, at
            # any given point _trace() is called, pypy is able to know the key.
            # This is because the key is determined by the physical source code
            # line, and that's invariant with the call site.
            #
            # This property of a dict with immutable keys, combined with
            # call-site-constant keys is a match for PyPy's module dict,
            # which is optimized for such workloads.
            #
            # This gives a 20% benefit on the workload described at
            # https://bitbucket.org/pypy/pypy/issue/1871/10x-slower-than-cpython-under-coverage
            self.should_trace_cache = __pypy__.newdict("module")
        else:
            self.should_trace_cache = {}

        # Our active Tracers.
        self.tracers = []

        self._clear_data()
Example #5
0
    def reset(self):
        """Clear collected data, and prepare to collect more."""
        # A dictionary mapping file names to dicts with line number keys (if not
        # branch coverage), or mapping file names to dicts with line number
        # pairs as keys (if branch coverage).
        self.data = {}

        # A dict mapping contexts to data dictionaries.
        self.contexts = {}
        self.contexts[None] = self.data

        # A dictionary mapping file names to file tracer plugin names that will
        # handle them.
        self.file_tracers = {}

        # The .should_trace_cache attribute is a cache from file names to
        # coverage.FileDisposition objects, or None.  When a file is first
        # considered for tracing, a FileDisposition is obtained from
        # Coverage.should_trace.  Its .trace attribute indicates whether the
        # file should be traced or not.  If it should be, a plugin with dynamic
        # file names can decide not to trace it based on the dynamic file name
        # being excluded by the inclusion rules, in which case the
        # FileDisposition will be replaced by None in the cache.
        if env.PYPY:
            import __pypy__                     # pylint: disable=import-error
            # Alex Gaynor said:
            # should_trace_cache is a strictly growing key: once a key is in
            # it, it never changes.  Further, the keys used to access it are
            # generally constant, given sufficient context. That is to say, at
            # any given point _trace() is called, pypy is able to know the key.
            # This is because the key is determined by the physical source code
            # line, and that's invariant with the call site.
            #
            # This property of a dict with immutable keys, combined with
            # call-site-constant keys is a match for PyPy's module dict,
            # which is optimized for such workloads.
            #
            # This gives a 20% benefit on the workload described at
            # https://bitbucket.org/pypy/pypy/issue/1871/10x-slower-than-cpython-under-coverage
            self.should_trace_cache = __pypy__.newdict("module")
        else:
            self.should_trace_cache = {}

        # Our active Tracers.
        self.tracers = []

        self._clear_data()
Example #6
0
    def _normalize_dict(_dict):
        # Credit: Lin Cheng
        # return the original dictionary if not running on PyPy
        try:
            from __pypy__ import strategy, newdict
        except Exception:
            return _dict

        # return the original dictionary if already using ModuleDictStrategy
        if strategy(_dict) == "ModuleDictStrategy":
            return _dict
        # create a new module dict
        new_dict = newdict("module")
        # copy over entries
        for key, value in _dict.items():
            new_dict[key] = value
        return new_dict
Example #7
0
 def __init__(self):
     self.flags = 0
     self.open = []
     self.groups = 1
     self.groupdict = newdict("module")
     self.lookbehind = 0
Example #8
0
def namedtuple(typename, field_names, verbose=False, rename=False):
    """Returns a new subclass of tuple with named fields.

    >>> Point = namedtuple('Point', ['x', 'y'])
    >>> Point.__doc__                   # docstring for the new class
    'Point(x, y)'
    >>> p = Point(11, y=22)             # instantiate with positional args or keywords
    >>> p[0] + p[1]                     # indexable like a plain tuple
    33
    >>> x, y = p                        # unpack like a regular tuple
    >>> x, y
    (11, 22)
    >>> p.x + p.y                       # fields also accessable by name
    33
    >>> d = p._asdict()                 # convert to a dictionary
    >>> d['x']
    11
    >>> Point(**d)                      # convert from a dictionary
    Point(x=11, y=22)
    >>> p._replace(x=100)               # _replace() is like str.replace() but targets named fields
    Point(x=100, y=22)

    """

    # Validate the field names.  At the user's option, either generate an error
    # message or automatically replace the field name with a valid name.
    if isinstance(field_names, basestring):
        field_names = field_names.replace(',', ' ').split()
    field_names = map(str, field_names)
    if rename:
        seen = set()
        for index, name in enumerate(field_names):
            if (not all(c.isalnum() or c=='_' for c in name)
                or _iskeyword(name)
                or not name
                or name[0].isdigit()
                or name.startswith('_')
                or name in seen):
                field_names[index] = '_%d' % index
            seen.add(name)
    for name in [typename] + field_names:
        if not all(c.isalnum() or c=='_' for c in name):
            raise ValueError('Type names and field names can only contain '
                             'alphanumeric characters and underscores: %r' % name)
        if _iskeyword(name):
            raise ValueError('Type names and field names cannot be a '
                             'keyword: %r' % name)
        if name[0].isdigit():
            raise ValueError('Type names and field names cannot start with '
                             'a number: %r' % name)
    seen = set()
    for name in field_names:
        if name.startswith('_') and not rename:
            raise ValueError('Field names cannot start with an underscore: '
                             '%r' % name)
        if name in seen:
            raise ValueError('Encountered duplicate field name: %r' % name)
        seen.add(name)

    # Fill-in the class template
    class_definition = _class_template.format(
        typename = typename,
        field_names = tuple(field_names),
        num_fields = len(field_names),
        arg_list = repr(tuple(field_names)).replace("'", "")[1:-1],
        repr_fmt = ', '.join(_repr_template.format(name=name)
                             for name in field_names),
        field_defs = '\n'.join(_field_template.format(index=index, name=name)
                               for index, name in enumerate(field_names))
    )
    if verbose:
        print class_definition

    # Execute the template string in a temporary namespace and support
    # tracing utilities by setting a value for frame.f_globals['__name__']
    namespace = newdict('module')
    namespace['__name__'] = 'namedtuple_%s' % typename
    namespace['OrderedDict'] = OrderedDict
    namespace['_property'] = property
    namespace['_tuple'] = tuple
    try:
        exec class_definition in namespace
    except SyntaxError as e:
        raise SyntaxError(e.message + ':\n' + class_definition)
    result = namespace[typename]

    # For pickling to work, the __module__ variable needs to be set to the frame
    # where the named tuple is created.  Bypass this step in environments where
    # sys._getframe is not defined (Jython for example) or sys._getframe is not
    # defined for arguments greater than 0 (IronPython).
    try:
        result.__module__ = _sys._getframe(1).f_globals.get('__name__', '__main__')
    except (AttributeError, ValueError):
        pass

    return result
Example #9
0
def namedtuple(typename, field_names, verbose=False, rename=False):
    """Returns a new subclass of tuple with named fields.

    >>> Point = namedtuple('Point', ['x', 'y'])
    >>> Point.__doc__                   # docstring for the new class
    'Point(x, y)'
    >>> p = Point(11, y=22)             # instantiate with positional args or keywords
    >>> p[0] + p[1]                     # indexable like a plain tuple
    33
    >>> x, y = p                        # unpack like a regular tuple
    >>> x, y
    (11, 22)
    >>> p.x + p.y                       # fields also accessable by name
    33
    >>> d = p._asdict()                 # convert to a dictionary
    >>> d['x']
    11
    >>> Point(**d)                      # convert from a dictionary
    Point(x=11, y=22)
    >>> p._replace(x=100)               # _replace() is like str.replace() but targets named fields
    Point(x=100, y=22)

    """

    # Validate the field names.  At the user's option, either generate an error
    # message or automatically replace the field name with a valid name.
    if isinstance(field_names, basestring):
        field_names = field_names.replace(',', ' ').split()
    field_names = map(str, field_names)
    typename = str(typename)
    if rename:
        seen = set()
        for index, name in enumerate(field_names):
            if (not all(c.isalnum() or c=='_' for c in name)
                or _iskeyword(name)
                or not name
                or name[0].isdigit()
                or name.startswith('_')
                or name in seen):
                field_names[index] = '_%d' % index
            seen.add(name)
    for name in [typename] + field_names:
        if type(name) != str:
            raise TypeError('Type names and field names must be strings')
        if not all(c.isalnum() or c=='_' for c in name):
            raise ValueError('Type names and field names can only contain '
                             'alphanumeric characters and underscores: %r' % name)
        if _iskeyword(name):
            raise ValueError('Type names and field names cannot be a '
                             'keyword: %r' % name)
        if name[0].isdigit():
            raise ValueError('Type names and field names cannot start with '
                             'a number: %r' % name)
    seen = set()
    for name in field_names:
        if name.startswith('_') and not rename:
            raise ValueError('Field names cannot start with an underscore: '
                             '%r' % name)
        if name in seen:
            raise ValueError('Encountered duplicate field name: %r' % name)
        seen.add(name)

    # Fill-in the class template
    class_definition = _class_template.format(
        typename = typename,
        field_names = tuple(field_names),
        num_fields = len(field_names),
        arg_list = repr(tuple(field_names)).replace("'", "")[1:-1],
        repr_fmt = ', '.join(_repr_template.format(name=name)
                             for name in field_names),
        field_defs = '\n'.join(_field_template.format(index=index, name=name)
                               for index, name in enumerate(field_names))
    )
    if verbose:
        print class_definition

    # Execute the template string in a temporary namespace and support
    # tracing utilities by setting a value for frame.f_globals['__name__']
    namespace = newdict('module')
    namespace['__name__'] = 'namedtuple_%s' % typename
    namespace['OrderedDict'] = OrderedDict
    namespace['_property'] = property
    namespace['_tuple'] = tuple
    try:
        exec class_definition in namespace
    except SyntaxError as e:
        raise SyntaxError(e.message + ':\n' + class_definition)
    result = namespace[typename]

    # For pickling to work, the __module__ variable needs to be set to the frame
    # where the named tuple is created.  Bypass this step in environments where
    # sys._getframe is not defined (Jython for example) or sys._getframe is not
    # defined for arguments greater than 0 (IronPython).
    try:
        result.__module__ = _sys._getframe(1).f_globals.get('__name__', '__main__')
    except (AttributeError, ValueError):
        pass

    return result
Example #10
0
 def __init__(self):
     self.flags = 0
     self.open = []
     self.groups = 1
     self.groupdict = newdict("module")
     self.lookbehind = 0
Example #11
0

def common_value(seq):
    cv = CommonValue()
    for val in seq:
        cv.present(val)
        if cv._value is None:
            break
    return cv.value


# dict optimized for small numbers of keys

if is_pypy:
    from __pypy__ import newdict
    create_small_dict = lambda: newdict('instance')
else:
    create_small_dict = dict

### string


def simplify_whitespace(s):
    return ' '.join(s.split())


_re_word_split = re.compile(r'[^a-zA-Z_]+')


def find_nonnumeric_words(s):
    words = _re_word_split.split(s)
Example #12
0
def namedtuple(typename, field_names, verbose=False, rename=False):
    """Returns a new subclass of tuple with named fields.

    >>> Point = namedtuple('Point', 'x y')
    >>> Point.__doc__                   # docstring for the new class
    'Point(x, y)'
    >>> p = Point(11, y=22)             # instantiate with positional args or keywords
    >>> p[0] + p[1]                     # indexable like a plain tuple
    33
    >>> x, y = p                        # unpack like a regular tuple
    >>> x, y
    (11, 22)
    >>> p.x + p.y                       # fields also accessable by name
    33
    >>> d = p._asdict()                 # convert to a dictionary
    >>> d['x']
    11
    >>> Point(**d)                      # convert from a dictionary
    Point(x=11, y=22)
    >>> p._replace(x=100)               # _replace() is like str.replace() but targets named fields
    Point(x=100, y=22)

    """

    # Parse and validate the field names.  Validation serves two purposes,
    # generating informative error messages and preventing template injection attacks.
    if isinstance(field_names, basestring):
        field_names = field_names.replace(',', ' ').split() # names separated by whitespace and/or commas
    field_names = tuple(map(str, field_names))
    if rename:
        names = list(field_names)
        seen = set()
        for i, name in enumerate(names):
            if (not all(c.isalnum() or c=='_' for c in name) or _iskeyword(name)
                or not name or name[0].isdigit() or name.startswith('_')
                or name in seen):
                names[i] = '_%d' % i
            seen.add(name)
        field_names = tuple(names)
    for name in (typename,) + field_names:
        if not all(c.isalnum() or c=='_' for c in name):
            raise ValueError('Type names and field names can only contain alphanumeric characters and underscores: %r' % name)
        if _iskeyword(name):
            raise ValueError('Type names and field names cannot be a keyword: %r' % name)
        if name[0].isdigit():
            raise ValueError('Type names and field names cannot start with a number: %r' % name)
    seen_names = set()
    for name in field_names:
        if name.startswith('_') and not rename:
            raise ValueError('Field names cannot start with an underscore: %r' % name)
        if name in seen_names:
            raise ValueError('Encountered duplicate field name: %r' % name)
        seen_names.add(name)

    # Create and fill-in the class template
    numfields = len(field_names)
    argtxt = repr(field_names).replace("'", "")[1:-1]   # tuple repr without parens or quotes
    reprtxt = ', '.join('%s=%%r' % name for name in field_names)
    template = '''class %(typename)s(tuple):
        '%(typename)s(%(argtxt)s)' \n
        __slots__ = () \n
        _fields = %(field_names)r \n
        def __new__(_cls, %(argtxt)s):
            'Create new instance of %(typename)s(%(argtxt)s)'
            return _tuple.__new__(_cls, (%(argtxt)s)) \n
        @classmethod
        def _make(cls, iterable, new=tuple.__new__, len=len):
            'Make a new %(typename)s object from a sequence or iterable'
            result = new(cls, iterable)
            if len(result) != %(numfields)d:
                raise TypeError('Expected %(numfields)d arguments, got %%d' %% len(result))
            return result \n
        def __repr__(self):
            'Return a nicely formatted representation string'
            return '%(typename)s(%(reprtxt)s)' %% self \n
        def _asdict(self):
            'Return a new OrderedDict which maps field names to their values'
            return OrderedDict(zip(self._fields, self)) \n
        __dict__ = property(_asdict) \n
        def _replace(_self, **kwds):
            'Return a new %(typename)s object replacing specified fields with new values'
            result = _self._make(map(kwds.pop, %(field_names)r, _self))
            if kwds:
                raise ValueError('Got unexpected field names: %%r' %% kwds.keys())
            return result \n
        def __getnewargs__(self):
            'Return self as a plain tuple.  Used by copy and pickle.'
            return tuple(self) \n\n''' % locals()
    for i, name in enumerate(field_names):
        template += "        %s = _property(lambda self: self[%d], doc='Alias for field number %d')\n" % (name, i, i)
    if verbose:
        print template

    # Execute the template string in a temporary namespace and
    # support tracing utilities by setting a value for frame.f_globals['__name__']
    namespace = newdict('module')
    namespace['OrderedDict'] = OrderedDict
    namespace['_property'] = property
    namespace['_tuple'] = tuple
    namespace['__name__'] = 'namedtuple_%s' % typename
    try:
        exec template in namespace
    except SyntaxError, e:
        raise SyntaxError(e.message + ':\n' + template)
Example #13
0
def magic_dict(**kwargs):
    import __pypy__
    res = __pypy__.newdict('module')
    res.update(kwargs)
    return res