Example #1
0
def bisplrep(x,
             y,
             z,
             w=None,
             xb=None,
             xe=None,
             yb=None,
             ye=None,
             kx=3,
             ky=3,
             task=0,
             s=None,
             eps=1e-16,
             tx=None,
             ty=None,
             full_output=0,
             nxest=None,
             nyest=None,
             quiet=1):
    """Find a bivariate B-spline representation of a surface.

    Description:

      Given a set of data points (x[i], y[i], z[i]) representing a surface
      z=f(x,y), compute a B-spline representation of the surface. Based on
      the routine SURFIT from FITPACK.

    Inputs:

      x, y, z -- Rank-1 arrays of data points.
      w -- Rank-1 array of weights. By default w=ones(len(x)).
      xb, xe -- End points of approximation interval in x.
      yb, ye -- End points of approximation interval in y.
                By default xb, xe, yb, ye = x.min(), x.max(), y.min(), y.max()
      kx, ky -- The degrees of the spline (1 <= kx, ky <= 5).  Third order
                (kx=ky=3) is recommended.
      task -- If task=0, find knots in x and y and coefficients for a given
                smoothing factor, s.
              If task=1, find knots and coefficients for another value of the
                smoothing factor, s.  bisplrep must have been previously called
                with task=0 or task=1.
              If task=-1, find coefficients for a given set of knots tx, ty.
      s -- A non-negative smoothing factor.  If weights correspond
           to the inverse of the standard-deviation of the errors in z,
           then a good s-value should be found in the range
           (m-sqrt(2*m),m+sqrt(2*m)) where m=len(x)
      eps -- A threshold for determining the effective rank of an
             over-determined linear system of equations (0 < eps < 1)
             --- not likely to need changing.
      tx, ty -- Rank-1 arrays of the knots of the spline for task=-1
      full_output -- Non-zero to return optional outputs.
      nxest, nyest -- Over-estimates of the total number of knots.
                      If None then nxest = max(kx+sqrt(m/2),2*kx+3),
                                   nyest = max(ky+sqrt(m/2),2*ky+3)
      quiet -- Non-zero to suppress printing of messages.

    Outputs: (tck, {fp, ier, msg})

      tck -- A list [tx, ty, c, kx, ky] containing the knots (tx, ty) and
             coefficients (c) of the bivariate B-spline representation of the
             surface along with the degree of the spline.

      fp -- The weighted sum of squared residuals of the spline approximation.
      ier -- An integer flag about splrep success.  Success is indicated if
             ier<=0. If ier in [1,2,3] an error occurred but was not raised.
             Otherwise an error is raised.
      msg -- A message corresponding to the integer flag, ier.

    Remarks:

      SEE bisplev to evaluate the value of the B-spline given its tck
      representation.

    See also:
      splprep, splrep, splint, sproot, splev - evaluation, roots, integral
      UnivariateSpline, BivariateSpline - an alternative wrapping
              of the FITPACK functions

    Notes:
    Based on algorithms from:
       Dierckx P. : An algorithm for surface fitting with spline functions
                    Ima J. Numer. Anal. 1 (1981) 267-283.
       Dierckx P. : An algorithm for surface fitting with spline functions
                    report tw50, Dept. Computer Science,K.U.Leuven, 1980.
       Dierckx P. : Curve and surface fitting with splines, Monographs on
                    Numerical Analysis, Oxford University Press, 1993.
    """
    x, y, z = map(myasarray, [x, y, z])
    x, y, z = map(ravel, [x, y, z])  # ensure 1-d arrays.
    m = len(x)
    if not (m == len(y) == len(z)):
        raise TypeError, 'len(x)==len(y)==len(z) must hold.'
    if w is None: w = ones(m, float)
    else: w = myasarray(w)
    if not len(w) == m:
        raise TypeError, ' len(w)=%d is not equal to m=%d' % (len(w), m)
    if xb is None: xb = x.min()
    if xe is None: xe = x.max()
    if yb is None: yb = y.min()
    if ye is None: ye = y.max()
    if not (-1 <= task <= 1): raise TypeError, 'task must be either -1,0, or 1'
    if s is None: s = m - sqrt(2 * m)
    if tx is None and task == -1:
        raise TypeError, 'Knots_x must be given for task=-1'
    if tx is not None: _surfit_cache['tx'] = myasarray(tx)
    nx = len(_surfit_cache['tx'])
    if ty is None and task == -1:
        raise TypeError, 'Knots_y must be given for task=-1'
    if ty is not None: _surfit_cache['ty'] = myasarray(ty)
    ny = len(_surfit_cache['ty'])
    if task == -1 and nx < 2 * kx + 2:
        raise TypeError, 'There must be at least 2*kx+2 knots_x for task=-1'
    if task == -1 and ny < 2 * ky + 2:
        raise TypeError, 'There must be at least 2*ky+2 knots_x for task=-1'
    if not ((1 <= kx <= 5) and (1 <= ky <= 5)):
        raise TypeError, 'Given degree of the spline (kx,ky=%d,%d) is not supported. (1<=k<=5)' % (
            kx, ky)
    if m < (kx + 1) * (ky + 1): raise TypeError, 'm>=(kx+1)(ky+1) must hold'
    if nxest is None: nxest = kx + sqrt(m / 2)
    if nyest is None: nyest = ky + sqrt(m / 2)
    nxest, nyest = max(nxest, 2 * kx + 3), max(nyest, 2 * ky + 3)
    if task >= 0 and s == 0:
        nxest = int(kx + sqrt(3 * m))
        nyest = int(ky + sqrt(3 * m))
    if task == -1:
        _surfit_cache['tx'] = myasarray(tx)
        _surfit_cache['ty'] = myasarray(ty)
    tx, ty = _surfit_cache['tx'], _surfit_cache['ty']
    wrk = _surfit_cache['wrk']
    iwrk = _surfit_cache['iwrk']
    u, v, km, ne = nxest - kx - 1, nyest - ky - 1, max(kx, ky) + 1, max(
        nxest, nyest)
    bx, by = kx * v + ky + 1, ky * u + kx + 1
    b1, b2 = bx, bx + v - ky
    if bx > by: b1, b2 = by, by + u - kx
    try:
        lwrk1 = int32(u * v * (2 + b1 + b2) + 2 *
                      (u + v + km * (m + ne) + ne - kx - ky) + b2 + 1)
        lwrk2 = int32(u * v * (b2 + 1) + b2)
    except OverflowError:
        raise OverflowError("Too many data points to interpolate")
    tx, ty, c, o = _fitpack._surfit(x, y, z, w, xb, xe, yb, ye, kx, ky, task,
                                    s, eps, tx, ty, nxest, nyest, wrk, lwrk1,
                                    lwrk2)
    _curfit_cache['tx'] = tx
    _curfit_cache['ty'] = ty
    _curfit_cache['wrk'] = o['wrk']
    ier, fp = o['ier'], o['fp']
    tck = [tx, ty, c, kx, ky]
    if ier <= 0 and not quiet:
        print _iermess2[ier][0]
        print "\tkx,ky=%d,%d nx,ny=%d,%d m=%d fp=%f s=%f" % (kx, ky, len(tx),
                                                             len(ty), m, fp, s)
    ierm = min(11, max(-3, ier))
    if ierm > 0 and not full_output:
        if ier in [1, 2, 3, 4, 5]:
            print "Warning: " + _iermess2[ierm][0]
            print "\tkx,ky=%d,%d nx,ny=%d,%d m=%d fp=%f s=%f" % (
                kx, ky, len(tx), len(ty), m, fp, s)
        else:
            try:
                raise _iermess2[ierm][1], _iermess2[ierm][0]
            except KeyError:
                raise _iermess2['unknown'][1], _iermess2['unknown'][0]
    if full_output:
        try:
            return tck, fp, ier, _iermess2[ierm][0]
        except KeyError:
            return tck, fp, ier, _iermess2['unknown'][0]
    else:
        return tck
Example #2
0
def bisplrep(x,y,z,w=None,xb=None,xe=None,yb=None,ye=None,kx=3,ky=3,task=0,
             s=None,eps=1e-16,tx=None,ty=None,full_output=0,
             nxest=None,nyest=None,quiet=1):
    """Find a bivariate B-spline representation of a surface.

    Description:

      Given a set of data points (x[i], y[i], z[i]) representing a surface
      z=f(x,y), compute a B-spline representation of the surface.

    Inputs:

      x, y, z -- Rank-1 arrays of data points.
      w -- Rank-1 array of weights. By default w=ones(len(x)).
      xb, xe -- End points of approximation interval in x.
      yb, ye -- End points of approximation interval in y.
                By default xb, xe, yb, ye = x.min(), x.max(), y.min(), y.max()
      kx, ky -- The degrees of the spline (1 <= kx, ky <= 5).  Third order
                (kx=ky=3) is recommended.
      task -- If task=0, find knots in x and y and coefficients for a given
                smoothing factor, s.
              If task=1, find knots and coefficients for another value of the
                smoothing factor, s.  bisplrep must have been previously called
                with task=0 or task=1.
              If task=-1, find coefficients for a given set of knots tx, ty.
      s -- A non-negative smoothing factor.  If weights correspond
           to the inverse of the standard-deviation of the errors in z,
           then a good s-value should be found in the range
           (m-sqrt(2*m),m+sqrt(2*m)) where m=len(x)
      eps -- A threshold for determining the effective rank of an
             over-determined linear system of equations (0 < eps < 1)
             --- not likely to need changing.
      tx, ty -- Rank-1 arrays of the knots of the spline for task=-1
      full_output -- Non-zero to return optional outputs.
      nxest, nyest -- Over-estimates of the total number of knots.
                      If None then nxest = max(kx+sqrt(m/2),2*kx+3),
                                   nyest = max(ky+sqrt(m/2),2*ky+3)
      quiet -- Non-zero to suppress printing of messages.

    Outputs: (tck, {fp, ier, msg})

      tck -- A list [tx, ty, c, kx, ky] containing the knots (tx, ty) and
             coefficients (c) of the bivariate B-spline representation of the
             surface along with the degree of the spline.

      fp -- The weighted sum of squared residuals of the spline approximation.
      ier -- An integer flag about splrep success.  Success is indicated if
             ier<=0. If ier in [1,2,3] an error occurred but was not raised.
             Otherwise an error is raised.
      msg -- A message corresponding to the integer flag, ier.

    Remarks:

      SEE bisplev to evaluate the value of the B-spline given its tck
      representation.

    See also:
      splprep, splrep, splint, sproot, splev - evaluation, roots, integral
      UnivariateSpline, BivariateSpline - an alternative wrapping 
              of the FITPACK functions
    """
    x,y,z=map(myasarray,[x,y,z])
    x,y,z=map(ravel,[x,y,z])  # ensure 1-d arrays.
    m=len(x)
    if not (m==len(y)==len(z)): raise TypeError, 'len(x)==len(y)==len(z) must hold.'
    if w is None: w=ones(m,float)
    else: w=myasarray(w)
    if not len(w) == m: raise TypeError,' len(w)=%d is not equal to m=%d'%(len(w),m)
    if xb is None: xb=x.min()
    if xe is None: xe=x.max()
    if yb is None: yb=y.min()
    if ye is None: ye=y.max()
    if not (-1<=task<=1): raise TypeError, 'task must be either -1,0, or 1'
    if s is None: s=m-sqrt(2*m)
    if tx is None and task==-1: raise TypeError, 'Knots_x must be given for task=-1'
    if tx is not None: _surfit_cache['tx']=myasarray(tx)
    nx=len(_surfit_cache['tx'])
    if ty is None and task==-1: raise TypeError, 'Knots_y must be given for task=-1'
    if ty is not None: _surfit_cache['ty']=myasarray(ty)
    ny=len(_surfit_cache['ty'])
    if task==-1 and nx<2*kx+2:
        raise TypeError, 'There must be at least 2*kx+2 knots_x for task=-1'
    if task==-1 and ny<2*ky+2:
        raise TypeError, 'There must be at least 2*ky+2 knots_x for task=-1'
    if not ((1<=kx<=5) and (1<=ky<=5)):
        raise TypeError, 'Given degree of the spline (kx,ky=%d,%d) is not supported. (1<=k<=5)'%(kx,ky)
    if m<(kx+1)*(ky+1): raise TypeError, 'm>=(kx+1)(ky+1) must hold'
    if nxest is None: nxest=kx+sqrt(m/2)
    if nyest is None: nyest=ky+sqrt(m/2)
    nxest,nyest=max(nxest,2*kx+3),max(nyest,2*ky+3)
    if task>=0 and s==0:
        nxest=int(kx+sqrt(3*m))
        nyest=int(ky+sqrt(3*m))
    if task==-1:
        _surfit_cache['tx']=myasarray(tx)
        _surfit_cache['ty']=myasarray(ty)
    tx,ty=_surfit_cache['tx'],_surfit_cache['ty']
    wrk=_surfit_cache['wrk']
    iwrk=_surfit_cache['iwrk']
    u,v,km,ne=nxest-kx-1,nyest-ky-1,max(kx,ky)+1,max(nxest,nyest)
    bx,by=kx*v+ky+1,ky*u+kx+1
    b1,b2=bx,bx+v-ky
    if bx>by: b1,b2=by,by+u-kx
    lwrk1=u*v*(2+b1+b2)+2*(u+v+km*(m+ne)+ne-kx-ky)+b2+1
    lwrk2=u*v*(b2+1)+b2
    tx,ty,c,o = _fitpack._surfit(x,y,z,w,xb,xe,yb,ye,kx,ky,task,s,eps,
                                   tx,ty,nxest,nyest,wrk,lwrk1,lwrk2)
    _curfit_cache['tx']=tx
    _curfit_cache['ty']=ty
    _curfit_cache['wrk']=o['wrk']
    ier,fp=o['ier'],o['fp']
    tck=[tx,ty,c,kx,ky]
    if ier<=0 and not quiet:
        print _iermess2[ier][0]
        print "\tkx,ky=%d,%d nx,ny=%d,%d m=%d fp=%f s=%f"%(kx,ky,len(tx),
                                                           len(ty),m,fp,s)
    ierm=min(11,max(-3,ier))
    if ierm>0 and not full_output:
        if ier in [1,2,3,4,5]:
            print "Warning: "+_iermess2[ierm][0]
            print "\tkx,ky=%d,%d nx,ny=%d,%d m=%d fp=%f s=%f"%(kx,ky,len(tx),
                                                           len(ty),m,fp,s)
        else:
            try:
                raise _iermess2[ierm][1],_iermess2[ierm][0]
            except KeyError:
                raise _iermess2['unknown'][1],_iermess2['unknown'][0]
    if full_output:
        try:
            return tck,fp,ier,_iermess2[ierm][0]
        except KeyError:
            return tck,fp,ier,_iermess2['unknown'][0]
    else:
        return tck
Example #3
0
def bisplrep(x,y,z,w=None,xb=None,xe=None,yb=None,ye=None,kx=3,ky=3,task=0,
             s=None,eps=1e-16,tx=None,ty=None,full_output=0,
             nxest=None,nyest=None,quiet=1):
    """
    Find a bivariate B-spline representation of a surface.

    Given a set of data points (x[i], y[i], z[i]) representing a surface
    z=f(x,y), compute a B-spline representation of the surface. Based on
    the routine SURFIT from FITPACK.

    Parameters
    ----------
    x, y, z : ndarray
        Rank-1 arrays of data points.
    w : ndarray, optional
        Rank-1 array of weights. By default ``w=np.ones(len(x))``.
    xb, xe : float, optional
        End points of approximation interval in `x`.
        By default ``xb = x.min(), xe=x.max()``.
    yb, ye : float, optional
        End points of approximation interval in `y`.
        By default ``yb=y.min(), ye = y.max()``.
    kx, ky : int, optional
        The degrees of the spline (1 <= kx, ky <= 5).
        Third order (kx=ky=3) is recommended.
    task : int, optional
        If task=0, find knots in x and y and coefficients for a given
        smoothing factor, s.
        If task=1, find knots and coefficients for another value of the
        smoothing factor, s.  bisplrep must have been previously called
        with task=0 or task=1.
        If task=-1, find coefficients for a given set of knots tx, ty.
    s : float, optional
        A non-negative smoothing factor.  If weights correspond
        to the inverse of the standard-deviation of the errors in z,
        then a good s-value should be found in the range
        ``(m-sqrt(2*m),m+sqrt(2*m))`` where m=len(x).
    eps : float, optional
        A threshold for determining the effective rank of an
        over-determined linear system of equations (0 < eps < 1).
        `eps` is not likely to need changing.
    tx, ty : ndarray, optional
        Rank-1 arrays of the knots of the spline for task=-1
    full_output : int, optional
        Non-zero to return optional outputs.
    nxest, nyest : int, optional
        Over-estimates of the total number of knots. If None then
        ``nxest = max(kx+sqrt(m/2),2*kx+3)``,
        ``nyest = max(ky+sqrt(m/2),2*ky+3)``.
    quiet : int, optional
        Non-zero to suppress printing of messages.

    Returns
    -------
    tck : array_like
        A list [tx, ty, c, kx, ky] containing the knots (tx, ty) and
        coefficients (c) of the bivariate B-spline representation of the
        surface along with the degree of the spline.
    fp : ndarray
        The weighted sum of squared residuals of the spline approximation.
    ier : int
        An integer flag about splrep success.  Success is indicated if
        ier<=0. If ier in [1,2,3] an error occurred but was not raised.
        Otherwise an error is raised.
    msg : str
        A message corresponding to the integer flag, ier.

    See Also
    --------
    splprep, splrep, splint, sproot, splev
    UnivariateSpline, BivariateSpline

    Notes
    -----
    See `bisplev` to evaluate the value of the B-spline given its tck
    representation.

    References
    ----------
    .. [1] Dierckx P.:An algorithm for surface fitting with spline functions
       Ima J. Numer. Anal. 1 (1981) 267-283.
    .. [2] Dierckx P.:An algorithm for surface fitting with spline functions
       report tw50, Dept. Computer Science,K.U.Leuven, 1980.
    .. [3] Dierckx P.:Curve and surface fitting with splines, Monographs on
       Numerical Analysis, Oxford University Press, 1993.

    """
    x,y,z=map(myasarray,[x,y,z])
    x,y,z=map(ravel,[x,y,z])  # ensure 1-d arrays.
    m=len(x)
    if not (m==len(y)==len(z)): raise TypeError, 'len(x)==len(y)==len(z) must hold.'
    if w is None: w=ones(m,float)
    else: w=myasarray(w)
    if not len(w) == m: raise TypeError,' len(w)=%d is not equal to m=%d'%(len(w),m)
    if xb is None: xb=x.min()
    if xe is None: xe=x.max()
    if yb is None: yb=y.min()
    if ye is None: ye=y.max()
    if not (-1<=task<=1): raise TypeError, 'task must be either -1,0, or 1'
    if s is None: s=m-sqrt(2*m)
    if tx is None and task==-1: raise TypeError, 'Knots_x must be given for task=-1'
    if tx is not None: _surfit_cache['tx']=myasarray(tx)
    nx=len(_surfit_cache['tx'])
    if ty is None and task==-1: raise TypeError, 'Knots_y must be given for task=-1'
    if ty is not None: _surfit_cache['ty']=myasarray(ty)
    ny=len(_surfit_cache['ty'])
    if task==-1 and nx<2*kx+2:
        raise TypeError, 'There must be at least 2*kx+2 knots_x for task=-1'
    if task==-1 and ny<2*ky+2:
        raise TypeError, 'There must be at least 2*ky+2 knots_x for task=-1'
    if not ((1<=kx<=5) and (1<=ky<=5)):
        raise TypeError, 'Given degree of the spline (kx,ky=%d,%d) is not supported. (1<=k<=5)'%(kx,ky)
    if m<(kx+1)*(ky+1): raise TypeError, 'm>=(kx+1)(ky+1) must hold'
    if nxest is None: nxest=kx+sqrt(m/2)
    if nyest is None: nyest=ky+sqrt(m/2)
    nxest,nyest=max(nxest,2*kx+3),max(nyest,2*ky+3)
    if task>=0 and s==0:
        nxest=int(kx+sqrt(3*m))
        nyest=int(ky+sqrt(3*m))
    if task==-1:
        _surfit_cache['tx']=myasarray(tx)
        _surfit_cache['ty']=myasarray(ty)
    tx,ty=_surfit_cache['tx'],_surfit_cache['ty']
    wrk=_surfit_cache['wrk']
    iwrk=_surfit_cache['iwrk']
    u,v,km,ne=nxest-kx-1,nyest-ky-1,max(kx,ky)+1,max(nxest,nyest)
    bx,by=kx*v+ky+1,ky*u+kx+1
    b1,b2=bx,bx+v-ky
    if bx>by: b1,b2=by,by+u-kx
    try:
        lwrk1=int32(u*v*(2+b1+b2)+2*(u+v+km*(m+ne)+ne-kx-ky)+b2+1)
        lwrk2=int32(u*v*(b2+1)+b2)
    except OverflowError:
        raise OverflowError("Too many data points to interpolate")
    tx,ty,c,o = _fitpack._surfit(x,y,z,w,xb,xe,yb,ye,kx,ky,task,s,eps,
                                   tx,ty,nxest,nyest,wrk,lwrk1,lwrk2)
    _curfit_cache['tx']=tx
    _curfit_cache['ty']=ty
    _curfit_cache['wrk']=o['wrk']
    ier,fp=o['ier'],o['fp']
    tck=[tx,ty,c,kx,ky]

    ierm=min(11,max(-3,ier))
    if ierm<=0 and not quiet:
        print _iermess2[ierm][0]
        print "\tkx,ky=%d,%d nx,ny=%d,%d m=%d fp=%f s=%f"%(kx,ky,len(tx),
                                                           len(ty),m,fp,s)
    if ierm>0 and not full_output:
        if ier in [1,2,3,4,5]:
            print "Warning: "+_iermess2[ierm][0]
            print "\tkx,ky=%d,%d nx,ny=%d,%d m=%d fp=%f s=%f"%(kx,ky,len(tx),
                                                           len(ty),m,fp,s)
        else:
            try:
                raise _iermess2[ierm][1],_iermess2[ierm][0]
            except KeyError:
                raise _iermess2['unknown'][1],_iermess2['unknown'][0]
    if full_output:
        try:
            return tck,fp,ier,_iermess2[ierm][0]
        except KeyError:
            return tck,fp,ier,_iermess2['unknown'][0]
    else:
        return tck