def get_dataset(CONFIG, X, Y, z_r): data = gprn.Dataset() num_data_sources = X.shape[0] for i in range(num_data_sources): x = np.array(X[i]) y = np.array(Y[i]) M = x.shape[1] print(M) b = 300 b = b if b < x.shape[0] else None if CONFIG['exp_ignore_i'] is not None: if i == CONFIG['exp_ignore_i']: continue data.add_source_dict({ 'M': M, 'x': x, 'y': y, #'z': x, 'batch_size': b }) data.add_inducing_points(z_r) return data
def get_dataset(X, Y, z_r): data = gprn.Dataset() num_data_sources = X.shape[0] for i in range(num_data_sources): #for i in [0]: #for i in [1]: x = X[i] y = Y[i] print('dataset: ', i, ' ', x.shape) M = x.shape[1] data.add_source_dict({ 'active_tasks': [[0], [0]], 'M': M, 'x': x, 'y': y, 'z': z_r, 'batch_size': None }) #data.add_inducing_points(z_r); return data
def get_dataset(X, Y, z_r): data = gprn.Dataset() rs = lambda x: x.reshape([x.shape[0] * x.shape[1], x.shape[2]]) for i in [1]: x = X[i][:, 0, :] y = Y[i] print('dataset: ', i, ' ', x.shape) data.add_source_dict({'x': x, 'y': y, 'z': z_r, 'batch_size': None}) #data.add_inducing_points(z_r); return data