def cross_validation(prob, param, fold): if param.gamma == 0: param.gamma = 1.0/prob.maxlen dblarr = svmc.new_double(prob.size) svmc.svm_cross_validation(prob.prob, param.param, fold, dblarr) ret = _double_array_to_list(dblarr, prob.size) svmc.delete_double(dblarr) return ret
def predict_values_raw(self,x): #convert x into svm_node, allocate a double array for return n = self.nr_class*(self.nr_class-1)/2 data = _convert_to_svm_node_array(x) dblarr = svmc.new_double(n) svmc.svm_predict_values(self.model, data, dblarr) ret = _double_array_to_list(dblarr, n) svmc.delete_double(dblarr) svmc.svm_node_array_destroy(data) return ret
def predict_probability(self,x): #c code will do nothing on wrong type, so we have to check ourself if self.svm_type == NU_SVR or self.svm_type == EPSILON_SVR: raise TypeError, "call get_svr_probability or get_svr_pdf for probability output of regression" elif self.svm_type == ONE_CLASS: raise TypeError, "probability not supported yet for one-class problem" #only C_SVC,NU_SVC goes in if not self.probability: raise TypeError, "model does not support probabiliy estimates" #convert x into svm_node, alloc a double array to receive probabilities data = _convert_to_svm_node_array(x) dblarr = svmc.new_double(self.nr_class) pred = svmc.svm_predict_probability(self.model, data, dblarr) pv = _double_array_to_list(dblarr, self.nr_class) svmc.delete_double(dblarr) svmc.svm_node_array_destroy(data) p = {} for i in range(len(self.labels)): p[self.labels[i]] = pv[i] return pred, p
def _free_double_array(x): if x != 'NULL' and x != None: svmc.delete_double(x)
def __del__(self): svmc.delete_svm_problem(self.prob) svmc.delete_double(self.y_array) for i in range(self.size): svmc.svm_node_array_destroy(self.data[i]) svmc.svm_node_matrix_destroy(self.x_matrix)