Example #1
0
    'data_set': [
        '400rpm_v2',
        '800rpm_v2',
        '1200rpm_v2',
    ],
    'evaluation_function': [
        'a2e.evaluation.reconstruction_error_cost',
        'a2e.evaluation.keras.reconstruction_error_vs_compression_cost',
        'a2e.evaluation.keras.uniform_reconstruction_error_vs_compression_cost'
    ],
}
config_space = create_config_space()

if __name__ == '__main__':
    experiment = Experiment(auto_datetime_directory=True)
    experiment.log('config/config', config)
    experiment.log('config/run_configs', run_configs)
    experiment.log('config/config_space', str(config_space))

    def run_callable(run_config: dict):
        experiment.print('Loading data')
        bearing_dataset = load_data(run_config['data_set'])
        train = bearing_dataset.train(column=config['data_column'],
                                      as_numpy=True)
        test = bearing_dataset.test(column=config['data_column'],
                                    as_numpy=True)
        test_labels = bearing_dataset.test(column=config['data_column'],
                                           add_label=True)['label']
        threshold_percentile = config['threshold_percentile']
        x_train, x_valid, y_train, y_valid = train_test_split(
            train,
Example #2
0
 ],
 'data_columns': [
     'rms',
     #'crest',
     #'temperature',
 ],
}
run_configs = {
 'data_set': config['data_sets'],
 'data_column': config['data_columns'],
 'fit_mode': config['fit_modes'],
 'scaling': config['scalings'],
}

experiment = Experiment()
experiment.log('config/config', config)
experiment.log('config/run_configs', run_configs)

output_dimension = config['input_size'] - config['prediction_shift']
model = create_lstm_autoencoder(config['input_size'], output_dimension=config['output_size'])


def run_callable(run_config: dict):
    def pre_processing_x(data_frame):
        numpy_data = data_frame.to_numpy()
        numpy_data = numpy_data[:-config['prediction_shift'], :]
        samples = build_samples(numpy_data.flatten(), config['input_size'], target_dimensions=3)

        if run_config['scaling'] == 'min_max':
            samples = Scaler(MinMaxScaler, fit_mode=run_config['fit_mode']).fit_transform(numpy_data)