Example #1
0
def predict(ctx, provider, filename, model_id, threshold, locally, output):
    """Predict with deployed model."""
    A2MLModel(ctx, provider).predict(filename,
                                     model_id,
                                     threshold=threshold,
                                     locally=locally,
                                     output=output)
Example #2
0
def actual(ctx, provider, filename, model_id):
    """Predict with deployed model."""
    A2MLModel(ctx, provider).actual(filename, model_id)
Example #3
0
def deploy(ctx, provider, model_id, locally):
    """Deploy trained model."""
    A2MLModel(ctx, provider).deploy(model_id, locally)
Example #4
0
def predict_model_task(params):
    return with_context(
        params, lambda ctx: A2MLModel(ctx, None).predict(
            *params['args'], **params['kwargs']))
Example #5
0
def deploy_model_task(params):
    return with_context(
        params, lambda ctx: A2MLModel(ctx, None).deploy(
            *params['args'], **params['kwargs']))
Example #6
0
def actual_model_task(params):
    return with_context(
        params, lambda ctx: A2MLModel(ctx, None).actual(
            *params['args'], **params['kwargs']))
Example #7
0
def actuals(ctx, provider, filename, model_id, locally):
    """Predict with deployed model."""
    A2MLModel(ctx, provider).actuals(model_id,
                                     filename=filename,
                                     locally=locally)
Example #8
0
def review(ctx, provider, model_id, output):
    """Predict with deployed model."""
    A2MLModel(ctx, provider).review(model_id)
Example #9
0
 def _predict(ctx):
     return A2MLModel(ctx).predict(*params['args'], **params['kwargs'])