Example #1
0
    def test_silicon(self):
        """Test silicon space group."""
        structure = Structure.from_file(abidata.ref_file("si_scf_WFK.nc"))

        assert structure.has_abi_spacegroup
        assert structure.abi_spacegroup.is_symmorphic
        spgrp = structure.abi_spacegroup
        repr(spgrp); str(spgrp)
        self.serialize_with_pickle(spgrp, test_eq=True)

        # Classes cover the entire group.
        assert sum(len(cls) for cls in spgrp.groupby_class()) == len(spgrp)

        # Multiplication table.
        mtable = spgrp.mult_table
        for i, oi in enumerate(spgrp):
            for j, oj in enumerate(spgrp):
                ij = mtable[i, j]
                assert ij is not None
                assert oi * oj == spgrp[ij]

        # Operation in the same class have the same trace and determinant.
        for cls in spgrp.groupby_class():
            #print(cls)
            op0 = cls[0]
            ref_trace, ref_det = op0.trace, op0.det
            for op in cls[1:]:
                assert op.trace == ref_trace
                assert op.det == ref_det

        assert spgrp == spgrp
        # FIXME: Temporary disabled spgid is set to 0 in the WFK file.
        #assert spgrp.spgid == 227
        assert spgrp.has_timerev
        assert len(spgrp) == 48 * 2
        assert spgrp.num_spatial_symmetries == 48

        assert spgrp.is_group()
        # TODO
        #si_symrel =
        si_tnons = np.reshape(24 * [0, 0, 0, 0.25, 0.25, 0.25], (48, 3))
        si_symafm = np.ones(48, dtype=np.int)

        self.assert_almost_equal(si_tnons, spgrp.tnons)
        self.assert_almost_equal(si_symafm, spgrp.symafm)
        assert not spgrp.afm_symmops

        for idx, symmop in enumerate(spgrp):
            repr(symmop); str(symmop)
            symmop.to_string(verbose=2)
            assert symmop in spgrp
            assert spgrp.count(symmop) == 1
            assert spgrp.find(symmop) == idx
            if symmop.det == 1: assert symmop.is_proper

        # Test pickle
        self.serialize_with_pickle(spgrp[0], protocols=None, test_eq=True)

        for idx in range(len(spgrp)-1):
            assert spgrp[idx] == spgrp[idx]
            assert spgrp[idx] != spgrp[idx+1]

        for fmop in spgrp.fm_symmops:
            assert fmop.is_fm and not fmop.is_afm

        ucell_coords = np.reshape([site.frac_coords for site in structure], (len(structure), 3))

        err_msg = ""
        for site in structure:
            for symop in spgrp:
                rot_coords = symop.rotate_r(site.frac_coords, in_ucell=True)

                for atom_coords in ucell_coords:
                    #print (atom_coords - rot_coords)
                    if np.allclose(atom_coords,  rot_coords):
                        break
                else:
                    err_msg += "Cannot find symmetrical image of %s\n" % str(rot_coords)

                assert not err_msg

        k1, k2 = [0.5, 0, 0], [0, 0.5, 0]
        ktab = spgrp.symeq(k1, k2, atol=None)
        assert ktab.isym != -1
        self.assert_equal(spgrp[ktab.isym].rotate_k(k1) - np.array(k2), ktab.g0)

        k1, k2 = [0.0, 0, 0], [0, 0.5, 0]
        ktab = spgrp.symeq(k1, k2, atol=None)
        assert ktab.isym == -1

        # Test little group with Gamma point.
        lg_gamma = spgrp.find_little_group(kpoint=[0, 0, 0])
        assert len(lg_gamma) == len(spgrp)
        repr(lg_gamma); str(lg_gamma)
        assert lg_gamma.is_symmorphic and not lg_gamma.on_bz_border
        for o1, (o2, g0) in zip(spgrp, lg_gamma.iter_symmop_g0()):
            assert o1 == o2
            assert np.all(g0 == 0)

        # Little group with X point.
        #    'G' : (0.000, 0.000, 0.000),
        #    'X' : (0.500, 0.000, 0.500),
        #    'W' : (0.500, 0.250, 0.750),
        #    'L' : (0.500, 0.500, 0.500),
        #    'K' : (0.375, 0.375, 0.750),
        #    'U' : (0.625, 0.250, 0.625)

        lg_x = spgrp.find_little_group(kpoint=[0.5, 0, 0.5])
        assert len(lg_x) == 32
        repr(lg_x); str(lg_x)
        assert lg_x.is_symmorphic and lg_x.on_bz_border

        # This is just to test from_structure but one should always try to init from file.
        other_spgroup = AbinitSpaceGroup.from_structure(structure, has_timerev=True)
        assert other_spgroup.has_timerev
        assert other_spgroup.spgid == 227
        assert len(other_spgroup) == 48 * 2
Example #2
0
def main():
    def show_examples_and_exit(err_msg=None, error_code=1):
        """Display the usage of the script."""
        sys.stderr.write(get_epilog())
        if err_msg: sys.stderr.write("Fatal Error\n" + err_msg + "\n")
        sys.exit(error_code)

    parser = get_parser(with_epilog=True)

    # Parse command line.
    try:
        options = parser.parse_args()
    except Exception as exc:
        show_examples_and_exit(error_code=1)

    if not options.command:
        show_examples_and_exit(error_code=1)

    # loglevel is bound to the string value obtained from the command line argument.
    # Convert to upper case to allow the user to specify --loglevel=DEBUG or --loglevel=debug
    import logging
    numeric_level = getattr(logging, options.loglevel.upper(), None)
    if not isinstance(numeric_level, int):
        raise ValueError('Invalid log level: %s' % options.loglevel)
    logging.basicConfig(level=numeric_level)

    if options.verbose > 2:
        print(options)

    if options.command == "spglib":
        structure = abilab.Structure.from_file(options.filepath)
        print(
            structure.spget_summary(symprec=options.symprec,
                                    angle_tolerance=options.angle_tolerance,
                                    verbose=options.verbose))
        #remove_equivalent_atoms(structure)

    elif options.command == "abispg":
        structure = abilab.Structure.from_file(options.filepath)
        spgrp = structure.abi_spacegroup

        if spgrp is not None:
            print(structure.spget_summary(verbose=options.verbose))
        else:
            # Here we compare Abinit wrt spglib. If spgrp is None, we create a temporary
            # task to run the code in dry-run mode.
            print("FILE does not contain Abinit symmetry operations.")
            print(
                "Calling Abinit in --dry-run mode with chkprim = 0 to get space group."
            )
            from abipy.data.hgh_pseudos import HGH_TABLE
            gsinp = factories.gs_input(structure,
                                       HGH_TABLE,
                                       spin_mode="unpolarized")
            gsinp["chkprim"] = 0
            abistructure = gsinp.abiget_spacegroup(tolsym=options.tolsym)
            print(abistructure.spget_summary(verbose=options.verbose))

            diff_structures(
                [structure, abistructure],
                mode=options.diff_mode,
                headers=["Input structure", "After Abinit symmetrization"],
                fmt="abivars")

            # Save file.
            save_structure(abistructure, options)

    elif options.command == "convert":
        fmt = options.format
        if fmt == "cif" and options.filepath.endswith(".cif"): fmt = "abivars"
        print(abilab.Structure.from_file(options.filepath).convert(fmt=fmt))

    elif options.command == "supercell":
        structure = abilab.Structure.from_file(options.filepath)

        options.scaling_matrix = np.array(options.scaling_matrix)
        if len(options.scaling_matrix) == 9:
            options.scaling_matrix.shape = (3, 3)
        if options.verbose:
            print("scaling matrix: ", options.scaling_matrix)

        supcell = structure * options.scaling_matrix
        #supcell = structure.make_supercell(scaling_matrix, to_unit_cell=True)
        print(supcell.convert(fmt=options.format))

    elif options.command == "abisanitize":
        print("\nCalling abi_sanitize to get a new structure in which:")
        print("    * Structure is refined.")
        print("    * Reduced to primitive settings.")
        print(
            "    * Lattice vectors are exchanged if the triple product is negative\n"
        )

        structure = abilab.Structure.from_file(options.filepath)
        sanitized = structure.abi_sanitize(
            symprec=options.symprec,
            angle_tolerance=options.angle_tolerance,
            primitive=not options.no_primitive,
            primitive_standard=options.primitive_standard)
        index = [options.filepath, "abisanitized"]
        dfs = abilab.dataframes_from_structures([structure, sanitized],
                                                index=index,
                                                with_spglib=True)

        abilab.print_dataframe(dfs.lattice, title="Lattice parameters:")
        abilab.print_dataframe(
            dfs.coords,
            title="Atomic positions (columns give the site index):")

        if not options.verbose:
            print("\nUse -v for more info")
            #print(sanitized.convert(fmt="cif"))
        else:
            #print("\nDifference between structures:")
            if len(structure) == len(sanitized):
                table = []
                for line1, line2 in zip(
                        str(structure).splitlines(),
                        str(sanitized).splitlines()):
                    table.append([line1, line2])
                print(
                    str(
                        tabulate(table,
                                 headers=["Initial structure",
                                          "Abisanitized"])))

            else:
                print("\nInitial structure:")
                print(structure)
                print("\nabisanitized structure:")
                print(sanitized)

        # Save file.
        save_structure(sanitized, options)

    elif options.command == "irefine":
        structure = abilab.Structure.from_file(options.filepath)
        sanitized = structure.copy()
        symprec, angle_tolerance = options.symprec, options.angle_tolerance
        print(
            "Calling abi_sanitize with increasing tolerances to reach target space group:",
            options.target_spgnum)
        print("Using symprec_step: ", options.symprec_step,
              ", angle_tolerance_step:", options.angle_tolerance_step,
              "ntrial", options.ntrial)
        itrial = 0
        while itrial < options.ntrial:
            print(">>> Trying with symprec: %s, angle_tolerance: %s" %
                  (symprec, angle_tolerance))
            sanitized = sanitized.abi_sanitize(
                symprec=symprec,
                angle_tolerance=angle_tolerance,
                primitive=not options.no_primitive,
                primitive_standard=options.primitive_standard)
            spg_symb, spg_num = sanitized.get_space_group_info(
                symprec=symprec, angle_tolerance=angle_tolerance)
            print(">>> Space-group number:", spg_symb, ", symbol:", spg_num,
                  "for trial:", itrial)
            if spg_num == options.target_spgnum:
                print(2 * "\n", "# Final structure with space group number:",
                      spg_symb, ", symbol:", spg_num, 2 * "\n")
                print(sanitized.convert(fmt="cif"))
                break

            # Increment counter and tols.
            itrial += 1
            symprec += options.symprec_step
            angle_tolerance += options.angle_tolerance_step
        else:
            print("Cannot find space group number:", options.target_spgnum,
                  "after", options.ntrial, "iterations")
            return 1

        # Save file.
        #save_structure(sanitized, options)

    elif options.command == "conventional":
        print(
            "\nCalling get_conventional_standard_structure to get conventional structure:"
        )
        print(
            "The standards are defined in Setyawan, W., & Curtarolo, S. (2010). "
        )
        print(
            "High-throughput electronic band structure calculations: Challenges and tools. "
        )
        print(
            "Computational Materials Science, 49(2), 299-312. doi:10.1016/j.commatsci.2010.05.010\n"
        )

        structure = abilab.Structure.from_file(options.filepath)
        conv = structure.get_conventional_standard_structure(
            international_monoclinic=True,
            symprec=options.symprec,
            angle_tolerance=options.angle_tolerance)
        index = [options.filepath, "conventional"]
        dfs = abilab.dataframes_from_structures([structure, conv],
                                                index=index,
                                                with_spglib=True)

        abilab.print_dataframe(dfs.lattice, title="Lattice parameters:")
        if options.verbose:
            abilab.print_dataframe(
                dfs.coords,
                title="Atomic positions (columns give the site index):")

        if not options.verbose:
            print("\nUse -v for more info")
        else:
            #print("\nDifference between structures:")
            if len(structure) == len(conv):
                table = []
                for line1, line2 in zip(
                        str(structure).splitlines(),
                        str(conv).splitlines()):
                    table.append([line1, line2])
                print(
                    str(
                        tabulate(table,
                                 headers=["Initial structure",
                                          "Conventional"])))

            else:
                print("\nInitial structure:\n", structure)
                print("\nConventional structure:\n", conv)

        # Save file.
        save_structure(conv, options)

    elif options.command == "neighbors":
        abilab.Structure.from_file(
            options.filepath).print_neighbors(radius=options.radius)

    elif options.command == "interpolate":
        initial_structure = abilab.Structure.from_file(options.filepaths[0])
        end_structure = abilab.Structure.from_file(options.filepaths[1])
        structures = initial_structure.interpolate(
            end_structure,
            nimages=options.nimages,
            interpolate_lattices=False,
            pbc=True,
            autosort_tol=options.autosort_tol)
        structures = list(map(abilab.Structure.as_structure, structures))
        for i, s in enumerate(structures):
            print(marquee("Structure #%d" % i, mark="="))
            print(s.convert(fmt=options.format))
            print(" ")

    elif options.command == "xrd":
        structure = abilab.Structure.from_file(options.filepath)
        two_theta_range = tuple(float(t) for t in options.two_theta_range)
        structure.plot_xrd(wavelength=options.wavelength,
                           two_theta_range=two_theta_range,
                           symprec=options.symprec,
                           annotate_peaks=not options.no_annotate_peaks)

    elif options.command == "oxistate":
        print(
            abilab.Structure.from_file(
                options.filepath).get_oxi_state_decorated())

    elif options.command == "ipython":
        structure = abilab.Structure.from_file(options.filepath)
        print(
            "Invoking Ipython, `structure` object will be available in the Ipython terminal"
        )
        import IPython
        IPython.start_ipython(argv=[], user_ns={"structure": structure})

    elif options.command == "notebook":
        structure = abilab.Structure.from_file(options.filepath)
        structure.make_and_open_notebook(nbpath=None,
                                         foreground=options.foreground)

    elif options.command == "visualize":
        structure = abilab.Structure.from_file(options.filepath)
        print(structure)
        print("Visualizing structure with:", options.appname)
        structure.visualize(appname=options.appname)

    elif options.command == "kpath":
        structure = abilab.Structure.from_file(options.filepath)
        print("# Abinit Structure")
        print(structure.abi_string)
        print("\n# K-path in reduced coordinates:")
        print("# tolwfr 1e-20 iscf -2 getden ??")
        print(" ndivsm 10")
        print(" kptopt", -(len(structure.hsym_kpoints) - 1))
        print(" kptbounds")
        for k in structure.hsym_kpoints:
            print("    %+.5f  %+.5f  %+.5f" % tuple(k.frac_coords), "#",
                  k.name)

    elif options.command == "bz":
        abilab.Structure.from_file(options.filepath).plot_bz()

    elif options.command == "ngkpt":
        d = abilab.Structure.from_file(options.filepath).calc_ksampling(
            options.nksmall)
        print("ngkpt %d %d %d" % (d.ngkpt[0], d.ngkpt[1], d.ngkpt[2]))
        print("nshiftk ", len(d.shiftk), "\nshiftk")
        for s in d.shiftk:
            print("  %s %s %s" % (s[0], s[1], s[2]))

    elif options.command == "ktables":
        structure = abilab.Structure.from_file(options.filepath)
        k = Ktables(structure, options.mesh, options.is_shift,
                    not options.no_time_reversal)
        print(k)
        print("")
        print(
            "NB: These results are obtained by calling spglib with the structure read from file."
        )
        print(
            "The k-points might differ from the ones expected by Abinit, especially if the space groups differ."
        )

        if not options.verbose:
            print("\nUse -v to obtain the BZ --> IBZ mapping.")
        else:
            print()
            k.print_bz2ibz()

    elif options.command == "abikmesh":
        structure = abilab.Structure.from_file(options.filepath)
        from abipy.data.hgh_pseudos import HGH_TABLE
        gsinp = factories.gs_input(structure,
                                   HGH_TABLE,
                                   spin_mode="unpolarized",
                                   kppa=options.kppa)
        if options.kppa is not None:
            print("Calling Abinit to compute the IBZ with kppa:", options.kppa,
                  "and shiftk:", options.shiftk)
            options.ngkpt = None
        else:
            print("Calling Abinit to compute the IBZ with ngkpt:",
                  options.ngkpt, "and shiftk", options.shiftk)
        ibz = gsinp.abiget_ibz(ngkpt=options.ngkpt,
                               shiftk=options.shiftk,
                               kptopt=options.kptopt)
        if options.verbose:
            print(gsinp)

        print("Found %d points in the IBZ:" % len(ibz.points))
        for i, (k, w) in enumerate(zip(ibz.points, ibz.weights)):
            print("%6d) [%+.3f, %+.3f, %+.3f]  weight=%.3f" %
                  (i, k[0], k[1], k[2], w))

    #elif options.command == "kmesh_jhu":
    #    structure = abilab.Structure.from_file(options.filepath)
    #    ksampling = structure.ksampling_from_jhudb(kppra=1000)
    #    #print(ksampling)

    elif options.command == "lgk":
        structure = abilab.Structure.from_file(options.filepath)
        spgrp = structure.abi_spacegroup
        if spgrp is None:
            cprint("Your file does not contain Abinit symmetry operations.",
                   "yellow")
            cprint(
                "Will call spglib to obtain the space group (assuming time-reversal: %s)"
                % (not options.no_time_reversal), "yellow")
            spgrp = AbinitSpaceGroup.from_structure(
                structure,
                has_timerev=not options.no_time_reversal,
                symprec=options.symprec,
                angle_tolerance=options.angle_tolerance)
        print()
        print(marquee("Structure", mark="="))
        print(structure.spget_summary(verbose=options.verbose))
        print("\n")

        print(marquee("Little Group", mark="="))
        ltk = spgrp.find_little_group(kpoint=options.kpoint)
        print(ltk.to_string(verbose=options.verbose))

    elif options.command == "kstar":
        structure = abilab.Structure.from_file(options.filepath)

        # TODO
        #kstar = structure.get_star_kpoint(options.kpoint, has_timerev=not options.no_time_reversal)

        # Call spglib to get spacegroup if Abinit spacegroup is not available.
        if structure.abi_spacegroup is None:
            structure.spgset_abi_spacegroup(
                has_timerev=not options.no_time_reversal)

        kpoint = Kpoint(options.kpoint, structure.reciprocal_lattice)
        kstar = kpoint.compute_star(structure.abi_spacegroup, wrap_tows=True)
        print("Found %s points in the star of %s\n" %
              (len(kstar), repr(kpoint)))
        for k in kstar:
            print(4 * " ", repr(k))

    elif options.command == "mp_id":
        # Get the Structure corresponding to material_id.
        structure = abilab.Structure.from_mpid(options.mpid,
                                               final=True,
                                               api_key=options.mapi_key,
                                               endpoint=options.endpoint)
        # Convert to format and print it.
        print(structure.convert(fmt=options.format))

    elif options.command == "mp_match":
        mp = abilab.mp_match_structure(options.filepath)
        if not mp.structures:
            cprint("No structure found in database", "yellow")
            return 1

        if options.notebook:
            return mp.make_and_open_notebook(foreground=options.foreground)
        else:
            mp.print_results(fmt=options.format, verbose=options.verbose)

        if options.browser:
            mp.open_browser(limit=None if options.verbose == 2 else 10)

    elif options.command == "mp_search":
        mp = abilab.mp_search(options.chemsys_formula_id)
        if not mp.structures:
            cprint("No structure found in Materials Project database",
                   "yellow")
            return 1
        if options.select_spgnum:
            mp = mp.filter_by_spgnum(options.select_spgnum)

        if options.notebook:
            return mp.make_and_open_notebook(foreground=options.foreground)
        else:
            mp.print_results(fmt=options.format, verbose=options.verbose)

        if options.browser:
            mp.open_browser(limit=None if options.verbose == 2 else 10)

    elif options.command == "mp_pd":
        if os.path.exists(options.file_or_elements):
            structure = abilab.Structure.from_file(options.file_or_elements)
            elements = structure.symbol_set
        else:
            elements = options.file_or_elements.split("-")

        if options.verbose > 1:
            print("Building phase-diagram for elements:", elements)
        with abilab.restapi.get_mprester(api_key=options.mapi_key,
                                         endpoint=options.endpoint) as rest:
            pdr = rest.get_phasediagram_results(elements)
            pdr.print_dataframes(verbose=options.verbose)
            pdr.plot(show_unstable=options.show_unstable)

    elif options.command == "cod_search":
        cod = abilab.cod_search(options.formula, primitive=options.primitive)
        if not cod.structures:
            cprint("No structure found in COD database", "yellow")
            return 1
        if options.select_spgnum:
            cod = cod.filter_by_spgnum(options.select_spgnum)

        if options.notebook:
            return cod.make_and_open_notebook(foreground=options.foreground)
        else:
            cod.print_results(fmt=options.format, verbose=options.verbose)

    elif options.command == "cod_id":
        # Get the Structure from COD
        structure = abilab.Structure.from_cod_id(options.cod_identifier,
                                                 primitive=options.primitive)
        # Convert to format and print it.
        print(structure.convert(fmt=options.format))

    elif options.command == "animate":
        filepath = options.filepath
        if any(filepath.endswith(ext) for ext in ("HIST", "HIST.nc")):
            with abilab.abiopen(filepath) as hist:
                structures = hist.structures

        elif "XDATCAR" in filepath:
            structures = Xdatcar(filepath).structures
            if not structures:
                raise RuntimeError(
                    "Your Xdatcar contains only one structure. Due to a bug "
                    "in the pymatgen routine, your structures won't be parsed correctly"
                    "Solution: Add another structure at the end of the file.")
        else:
            raise ValueError("Don't know how to handle file %s" % filepath)

        xsf_write_structure(sys.stdout, structures)

    else:
        raise ValueError("Unsupported command: %s" % options.command)

    return 0
Example #3
0
    def test_silicon(self):
        """Test silicon space group."""
        structure = Structure.from_file(abidata.ref_file("si_scf_WFK.nc"))

        assert structure.has_abi_spacegroup
        assert structure.abi_spacegroup.is_symmorphic
        spgrp = structure.abi_spacegroup
        repr(spgrp)
        str(spgrp)
        self.serialize_with_pickle(spgrp, test_eq=True)

        # Classes cover the entire group.
        assert sum(len(cls) for cls in spgrp.groupby_class()) == len(spgrp)

        # Multiplication table.
        mtable = spgrp.mult_table
        for i, oi in enumerate(spgrp):
            for j, oj in enumerate(spgrp):
                ij = mtable[i, j]
                assert ij is not None
                assert oi * oj == spgrp[ij]

        # Operation in the same class have the same trace and determinant.
        for cls in spgrp.groupby_class():
            #print(cls)
            op0 = cls[0]
            ref_trace, ref_det = op0.trace, op0.det
            for op in cls[1:]:
                assert op.trace == ref_trace
                assert op.det == ref_det

        assert spgrp == spgrp
        # FIXME: Temporary disabled spgid is set to 0 in the WFK file.
        #assert spgrp.spgid == 227
        assert spgrp.has_timerev
        assert len(spgrp) == 48 * 2
        assert spgrp.num_spatial_symmetries == 48
        assert spgrp.get_spglib_hall_number() == 525

        assert spgrp.is_group()
        # TODO
        #si_symrel =
        si_tnons = np.reshape(24 * [0, 0, 0, 0.25, 0.25, 0.25], (48, 3))
        si_symafm = np.ones(48, dtype=int)

        self.assert_almost_equal(si_tnons, spgrp.tnons)
        self.assert_almost_equal(si_symafm, spgrp.symafm)
        assert not spgrp.afm_symmops

        for idx, symmop in enumerate(spgrp):
            repr(symmop)
            str(symmop)
            symmop.to_string(verbose=2)
            assert symmop in spgrp
            assert spgrp.count(symmop) == 1
            assert spgrp.find(symmop) == idx
            if symmop.det == 1: assert symmop.is_proper

        # Test pickle
        self.serialize_with_pickle(spgrp[0], protocols=None, test_eq=True)

        for idx in range(len(spgrp) - 1):
            assert spgrp[idx] == spgrp[idx]
            assert spgrp[idx] != spgrp[idx + 1]

        for fmop in spgrp.fm_symmops:
            assert fmop.is_fm and not fmop.is_afm

        ucell_coords = np.reshape([site.frac_coords for site in structure],
                                  (len(structure), 3))

        err_msg = ""
        for site in structure:
            for symop in spgrp:
                rot_coords = symop.rotate_r(site.frac_coords, in_ucell=True)

                for atom_coords in ucell_coords:
                    #print (atom_coords - rot_coords)
                    if np.allclose(atom_coords, rot_coords):
                        break
                else:
                    err_msg += "Cannot find symmetrical image of %s\n" % str(
                        rot_coords)

                assert not err_msg

        k1, k2 = [0.5, 0, 0], [0, 0.5, 0]
        ktab = spgrp.symeq(k1, k2, atol=None)
        assert ktab.isym != -1
        self.assert_equal(spgrp[ktab.isym].rotate_k(k1) - np.array(k2),
                          ktab.g0)

        k1, k2 = [0.0, 0, 0], [0, 0.5, 0]
        ktab = spgrp.symeq(k1, k2, atol=None)
        assert ktab.isym == -1

        # Test little group with Gamma point.
        lg_gamma = spgrp.find_little_group(kpoint=[0, 0, 0])
        assert len(lg_gamma) == len(spgrp)
        repr(lg_gamma)
        str(lg_gamma)
        assert lg_gamma.is_symmorphic and not lg_gamma.on_bz_border
        for o1, (o2, g0) in zip(spgrp, lg_gamma.iter_symmop_g0()):
            assert o1 == o2
            assert np.all(g0 == 0)

        # Little group with X point.
        #    'G' : (0.000, 0.000, 0.000),
        #    'X' : (0.500, 0.000, 0.500),
        #    'W' : (0.500, 0.250, 0.750),
        #    'L' : (0.500, 0.500, 0.500),
        #    'K' : (0.375, 0.375, 0.750),
        #    'U' : (0.625, 0.250, 0.625)

        lg_x = spgrp.find_little_group(kpoint=[0.5, 0, 0.5])
        assert len(lg_x) == 32
        repr(lg_x)
        str(lg_x)
        assert lg_x.is_symmorphic and lg_x.on_bz_border

        # This is just to test from_structure but one should always try to init from file.
        other_spgroup = AbinitSpaceGroup.from_structure(structure,
                                                        has_timerev=True)
        assert other_spgroup.has_timerev
        assert other_spgroup.spgid == 227
        assert len(other_spgroup) == 48 * 2
Example #4
0
def main():

    def show_examples_and_exit(err_msg=None, error_code=1):
        """Display the usage of the script."""
        sys.stderr.write(get_epilog())
        if err_msg: sys.stderr.write("Fatal Error\n" + err_msg + "\n")
        sys.exit(error_code)

    parser = get_parser(with_epilog=True)

    # Parse command line.
    try:
        options = parser.parse_args()
    except Exception as exc:
        show_examples_and_exit(error_code=1)

    if not options.command:
        show_examples_and_exit(error_code=1)

    # loglevel is bound to the string value obtained from the command line argument.
    # Convert to upper case to allow the user to specify --loglevel=DEBUG or --loglevel=debug
    import logging
    numeric_level = getattr(logging, options.loglevel.upper(), None)
    if not isinstance(numeric_level, int):
        raise ValueError('Invalid log level: %s' % options.loglevel)
    logging.basicConfig(level=numeric_level)

    if options.verbose > 2:
        print(options)

    if options.command == "spglib":
        structure = abilab.Structure.from_file(options.filepath)
        print(structure.spget_summary(symprec=options.symprec, angle_tolerance=options.angle_tolerance,
                                      verbose=options.verbose))
        #remove_equivalent_atoms(structure)

    elif options.command == "abispg":
        structure = abilab.Structure.from_file(options.filepath)
        check_ordered_structure(structure)
        spgrp = structure.abi_spacegroup

        if spgrp is not None:
            print(structure.spget_summary(verbose=options.verbose))
        else:
            # Here we compare Abinit wrt spglib. If spgrp is None, we create a temporary
            # task to run the code in dry-run mode.
            print("FILE does not contain Abinit symmetry operations.")
            print("Calling Abinit in --dry-run mode with chkprim = 0 to get space group.")
            from abipy.data.hgh_pseudos import HGH_TABLE
            gsinp = factories.gs_input(structure, HGH_TABLE, spin_mode="unpolarized")
            gsinp["chkprim"] = 0
            abistructure = gsinp.abiget_spacegroup(tolsym=options.tolsym)
            print(abistructure.spget_summary(verbose=options.verbose))

            diff_structures([structure, abistructure], mode=options.diff_mode,
                            headers=["Input structure", "After Abinit symmetrization"], fmt="abivars")

            # Save file.
            save_structure(abistructure, options)

    elif options.command == "convert":
        fmt = options.format
        if fmt == "cif" and options.filepath.endswith(".cif"): fmt = "abivars"
        print(abilab.Structure.from_file(options.filepath).convert(fmt=fmt))

    elif options.command == "supercell":
        structure = abilab.Structure.from_file(options.filepath)

        options.scaling_matrix = np.array(options.scaling_matrix)
        if len(options.scaling_matrix) == 9:
            options.scaling_matrix.shape = (3, 3)
        if options.verbose:
            print("scaling matrix: ", options.scaling_matrix)

        supcell = structure * options.scaling_matrix
        #supcell = structure.make_supercell(scaling_matrix, to_unit_cell=True)
        print(supcell.convert(fmt=options.format))

    elif options.command == "abisanitize":
        print("\nCalling abi_sanitize to get a new structure in which:")
        print("    * Structure is refined.")
        print("    * Reduced to primitive settings.")
        print("    * Lattice vectors are exchanged if the triple product is negative\n")

        structure = abilab.Structure.from_file(options.filepath)
        sanitized = structure.abi_sanitize(symprec=options.symprec, angle_tolerance=options.angle_tolerance,
                                           primitive=not options.no_primitive, primitive_standard=options.primitive_standard)
        index = [options.filepath, "abisanitized"]
        dfs = abilab.dataframes_from_structures([structure, sanitized], index=index, with_spglib=True)

        abilab.print_dataframe(dfs.lattice, title="Lattice parameters:")
        abilab.print_dataframe(dfs.coords, title="Atomic positions (columns give the site index):")

        if not options.verbose:
            print("\nUse -v for more info")
            #print(sanitized.convert(fmt="cif"))
        else:
            #print("\nDifference between structures:")
            if len(structure) == len(sanitized):
                table = []
                for line1, line2 in zip(str(structure).splitlines(), str(sanitized).splitlines()):
                    table.append([line1, line2])
                print(str(tabulate(table, headers=["Initial structure", "Abisanitized"])))

            else:
                print("\nInitial structure:")
                print(structure)
                print("\nabisanitized structure:")
                print(sanitized)

        # Save file.
        save_structure(sanitized, options)

    elif options.command == "irefine":
        structure = abilab.Structure.from_file(options.filepath)
        sanitized = structure.copy()
        symprec, angle_tolerance = options.symprec, options.angle_tolerance
        print("Calling abi_sanitize with increasing tolerances to reach target space group:", options.target_spgnum)
        print("Using symprec_step: ", options.symprec_step, ", angle_tolerance_step:", options.angle_tolerance_step,
              "ntrial", options.ntrial)
        itrial = 0
        while itrial < options.ntrial:
            print(">>> Trying with symprec: %s, angle_tolerance: %s" % (symprec, angle_tolerance))
            sanitized = sanitized.abi_sanitize(symprec=symprec, angle_tolerance=angle_tolerance,
                primitive=not options.no_primitive, primitive_standard=options.primitive_standard)
            spg_symb, spg_num = sanitized.get_space_group_info(symprec=symprec, angle_tolerance=angle_tolerance)
            print(">>> Space-group number:", spg_symb, ", symbol:", spg_num, "for trial:", itrial)
            if spg_num == options.target_spgnum:
                print(2 * "\n", "# Final structure with space group number:", spg_symb, ", symbol:", spg_num, 2 *"\n")
                print(sanitized.convert(fmt="cif"))
                break

            # Increment counter and tols.
            itrial += 1
            symprec += options.symprec_step
            angle_tolerance += options.angle_tolerance_step
        else:
            print("Cannot find space group number:", options.target_spgnum, "after", options.ntrial, "iterations")
            return 1

        # Save file.
        #save_structure(sanitized, options)

    elif options.command == "conventional":
        print("\nCalling get_conventional_standard_structure to get conventional structure:")
        print("The standards are defined in Setyawan, W., & Curtarolo, S. (2010). ")
        print("High-throughput electronic band structure calculations: Challenges and tools. ")
        print("Computational Materials Science, 49(2), 299-312. doi:10.1016/j.commatsci.2010.05.010\n")

        structure = abilab.Structure.from_file(options.filepath)
        conv = structure.get_conventional_standard_structure(international_monoclinic=True,
                                           symprec=options.symprec, angle_tolerance=options.angle_tolerance)
        index = [options.filepath, "conventional"]
        dfs = abilab.dataframes_from_structures([structure, conv], index=index, with_spglib=True)

        abilab.print_dataframe(dfs.lattice, title="Lattice parameters:")
        if options.verbose:
            abilab.print_dataframe(dfs.coords, title="Atomic positions (columns give the site index):")

        if not options.verbose:
            print("\nUse -v for more info")
        else:
            #print("\nDifference between structures:")
            if len(structure) == len(conv):
                table = []
                for line1, line2 in zip(str(structure).splitlines(), str(conv).splitlines()):
                    table.append([line1, line2])
                print(str(tabulate(table, headers=["Initial structure", "Conventional"])))

            else:
                print("\nInitial structure:\n", structure)
                print("\nConventional structure:\n", conv)

        # Save file.
        save_structure(conv, options)

    elif options.command == "neighbors":
        abilab.Structure.from_file(options.filepath).print_neighbors(radius=options.radius)

    elif options.command == "interpolate":
        initial_structure = abilab.Structure.from_file(options.filepaths[0])
        end_structure = abilab.Structure.from_file(options.filepaths[1])
        structures = initial_structure.interpolate(end_structure, nimages=options.nimages,
                                                   interpolate_lattices=False, pbc=True,
                                                   autosort_tol=options.autosort_tol)
        structures = list(map(abilab.Structure.as_structure, structures))
        for i, s in enumerate(structures):
            print(marquee("Structure #%d" % i, mark="="))
            print(s.convert(fmt=options.format))
            print(" ")

    elif options.command == "xrd":
        structure = abilab.Structure.from_file(options.filepath)
        two_theta_range = tuple(float(t) for t in options.two_theta_range)
        structure.plot_xrd(wavelength=options.wavelength, two_theta_range=two_theta_range,
                           symprec=options.symprec, annotate_peaks=not options.no_annotate_peaks)

    elif options.command == "oxistate":
        print(abilab.Structure.from_file(options.filepath).get_oxi_state_decorated())

    elif options.command == "ipython":
        structure = abilab.Structure.from_file(options.filepath)
        print("Invoking Ipython, `structure` object will be available in the Ipython terminal")
        import IPython
        IPython.start_ipython(argv=[], user_ns={"structure": structure})

    elif options.command == "notebook":
        structure = abilab.Structure.from_file(options.filepath)
        structure.make_and_open_notebook(nbpath=None, foreground=options.foreground)

    elif options.command == "visualize":
        structure = abilab.Structure.from_file(options.filepath)
        print(structure)
        print("Visualizing structure with:", options.appname)
        structure.visualize(appname=options.appname)

    elif options.command == "kpath":
        structure = abilab.Structure.from_file(options.filepath)
        print(structure.get_kpath_input_string(fmt=options.format, line_density=10))

    elif options.command == "bz":
        abilab.Structure.from_file(options.filepath).plot_bz()

    elif options.command == "ngkpt":
        d = abilab.Structure.from_file(options.filepath).calc_ksampling(options.nksmall)
        print("ngkpt %d %d %d" % (d.ngkpt[0], d.ngkpt[1], d.ngkpt[2]))
        print("nshiftk ", len(d.shiftk), "\nshiftk")
        for s in d.shiftk:
            print("  %s %s %s" % (s[0], s[1], s[2]))

    elif options.command == "ktables":
        structure = abilab.Structure.from_file(options.filepath)
        k = Ktables(structure, options.mesh, options.is_shift, not options.no_time_reversal)
        print(k)
        print("")
        print("NB: These results are obtained by calling spglib with the structure read from file.")
        print("The k-points might differ from the ones expected by Abinit, especially if the space groups differ.")

        if not options.verbose:
            print("\nUse -v to obtain the BZ --> IBZ mapping.")
        else:
            print()
            k.print_bz2ibz()

    elif options.command == "abikmesh":
        structure = abilab.Structure.from_file(options.filepath)
        if options.kppa is None and options.ngkpt is None:
            raise ValueError("Either ngkpt or kppa must be provided")

        if options.kppa is not None:
            print("Calling Abinit to compute the IBZ with kppa:", options.kppa, "and shiftk:", options.shiftk)
            ibz = IrredZone.from_kppa(structure, options.kppa, options.shiftk,
                                      kptopt=options.kptopt, verbose=options.verbose)
        else:
            print("Calling Abinit to compute the IBZ with ngkpt:", options.ngkpt, "and shiftk:", options.shiftk)
            ibz = IrredZone.from_ngkpt(structure, options.ngkpt, options.shiftk,
                                       kptopt=options.kptopt, verbose=options.verbose)

        print(ibz.to_string(verbose=options.verbose))

    #elif options.command == "kmesh_jhu":
    #    structure = abilab.Structure.from_file(options.filepath)
    #    ksampling = structure.ksampling_from_jhudb(kppra=1000)
    #    #print(ksampling)

    elif options.command == "lgk":
        structure = abilab.Structure.from_file(options.filepath)
        spgrp = structure.abi_spacegroup
        if spgrp is None:
            cprint("Your file does not contain Abinit symmetry operations.", "yellow")
            cprint("Will call spglib to obtain the space group (assuming time-reversal: %s)" %
                   (not options.no_time_reversal), "yellow")
            spgrp = AbinitSpaceGroup.from_structure(structure, has_timerev=not options.no_time_reversal,
                        symprec=options.symprec, angle_tolerance=options.angle_tolerance)
        print()
        print(marquee("Structure", mark="="))
        print(structure.spget_summary(verbose=options.verbose))
        print("\n")

        print(marquee("Little Group", mark="="))
        ltk = spgrp.find_little_group(kpoint=options.kpoint)
        print(ltk.to_string(verbose=options.verbose))

    elif options.command == "kstar":
        structure = abilab.Structure.from_file(options.filepath)

        # Call spglib to get spacegroup if Abinit spacegroup is not available.
        if structure.abi_spacegroup is None:
            structure.spgset_abi_spacegroup(has_timerev=not options.no_time_reversal)

        kpoint = Kpoint(options.kpoint, structure.reciprocal_lattice)
        kstar = kpoint.compute_star(structure.abi_spacegroup, wrap_tows=True)
        print("Found %s points in the star of %s\n" % (len(kstar), repr(kpoint)))
        for k in kstar:
            print(4 * " ", repr(k))

    elif options.command == "keq":
        structure = abilab.Structure.from_file(options.filepath)

        # Call spglib to get spacegroup if Abinit spacegroup is not available.
        if structure.abi_spacegroup is None:
            structure.spgset_abi_spacegroup(has_timerev=not options.no_time_reversal)

        k1, k2 = options.kpoints[:3], options.kpoints[3:6]
        k1tab = structure.abi_spacegroup.symeq(k1, k2)

        if k1tab.isym != -1:
            print("\nk1:", k1, "and k2:", k2, "are symmetry equivalent k-points\n")
            print("Related by the symmetry operation (reduced coords):\n", k1tab.op)
            print("With umklapp vector Go = TO(k1) - k2 =", k1tab.g0)
        else:
            print(k1, "and", k2, "are NOT symmetry equivalent")

    elif options.command == "mp_id":
        # Get the Structure corresponding to material_id.
        structure = abilab.Structure.from_mpid(options.mpid, final=True,
                                               api_key=options.mapi_key, endpoint=options.endpoint)
        # Convert to format and print it.
        print(structure.convert(fmt=options.format))

    elif options.command == "mp_match":
        mp = abilab.mp_match_structure(options.filepath)
        if not mp.structures:
            cprint("No structure found in database", "yellow")
            return 1

        if options.notebook:
            return mp.make_and_open_notebook(foreground=options.foreground)
        else:
            mp.print_results(fmt=options.format, verbose=options.verbose)

        if options.browser:
            mp.open_browser(limit=None if options.verbose == 2 else 10)

    elif options.command == "mp_search":
        mp = abilab.mp_search(options.chemsys_formula_id)
        if not mp.structures:
            cprint("No structure found in Materials Project database", "yellow")
            return 1
        if options.select_spgnum: mp = mp.filter_by_spgnum(options.select_spgnum)

        if options.notebook:
            return mp.make_and_open_notebook(foreground=options.foreground)
        else:
            mp.print_results(fmt=options.format, verbose=options.verbose)

        if options.browser:
            mp.open_browser(limit=None if options.verbose == 2 else 10)

    elif options.command == "mp_pd":
        if os.path.exists(options.file_or_elements):
            structure = abilab.Structure.from_file(options.file_or_elements)
            elements = structure.symbol_set
        else:
            elements = options.file_or_elements.split("-")

        if options.verbose > 1: print("Building phase-diagram for elements:", elements)
        with abilab.restapi.get_mprester(api_key=options.mapi_key, endpoint=options.endpoint) as rest:
            pdr = rest.get_phasediagram_results(elements)
            pdr.print_dataframes(verbose=options.verbose)
            pdr.plot(show_unstable=options.show_unstable)

    elif options.command == "cod_search":
        cod = abilab.cod_search(options.formula, primitive=options.primitive)
        if not cod.structures:
            cprint("No structure found in COD database", "yellow")
            return 1
        if options.select_spgnum: cod = cod.filter_by_spgnum(options.select_spgnum)

        if options.notebook:
            return cod.make_and_open_notebook(foreground=options.foreground)
        else:
            cod.print_results(fmt=options.format, verbose=options.verbose)

    elif options.command == "cod_id":
        # Get the Structure from COD
        structure = abilab.Structure.from_cod_id(options.cod_identifier, primitive=options.primitive)
        # Convert to format and print it.
        print(structure.convert(fmt=options.format))

    elif options.command == "animate":
        filepath = options.filepath
        if any(filepath.endswith(ext) for ext in ("HIST", "HIST.nc")):
            with abilab.abiopen(filepath) as hist:
                structures = hist.structures

        elif "XDATCAR" in filepath:
            structures = Xdatcar(filepath).structures
            if not structures:
                raise RuntimeError("Your Xdatcar contains only one structure. Due to a bug "
                    "in the pymatgen routine, your structures won't be parsed correctly"
                    "Solution: Add another structure at the end of the file.")
        else:
            raise ValueError("Don't know how to handle file %s" % filepath)

        xsf_write_structure(sys.stdout, structures)

    else:
        raise ValueError("Unsupported command: %s" % options.command)

    return 0