Example #1
0
 def test_flag_help_in_xml_space_separated_list(self):
   flags.DEFINE_spaceseplist('dirs', 'src libs bin',
                             'Directories to search.', flag_values=self.fv)
   expected_separators = sorted(string.whitespace)
   expected_output = (
       '<flag>\n'
       '  <file>tool</file>\n'
       '  <name>dirs</name>\n'
       '  <meaning>Directories to search.</meaning>\n'
       '  <default>src libs bin</default>\n'
       '  <current>[\'src\', \'libs\', \'bin\']</current>\n'
       '  <type>whitespace separated list of strings</type>\n'
       'LIST_SEPARATORS'
       '</flag>\n').replace('LIST_SEPARATORS',
                            _list_separators_in_xmlformat(expected_separators,
                                                          indent='  '))
   self._check_flag_help_in_xml('dirs', 'tool', expected_output)
Example #2
0

if __name__ == '__main__':
    utils.setup_tf()
    flags.DEFINE_float('wd', 0.02, 'Weight decay.')
    flags.DEFINE_float('ema', 0.999, 'Exponential moving average of params.')
    flags.DEFINE_float('smoothing', 0.001, 'Label smoothing.')
    flags.DEFINE_integer('scales', 0,
                         'Number of 2x2 downscalings in the classifier.')
    flags.DEFINE_integer('filters', 32, 'Filter size of convolutions.')
    flags.DEFINE_integer('repeat', 4, 'Number of residual layers per stage.')
    flags.DEFINE_bool('custom_dataset', True,
                      'True if using a custom dataset.')
    flags.DEFINE_integer('nclass', 42,
                         'Number of classes present in custom dataset.')
    flags.DEFINE_integer('img_size', 32, 'Size of Images in custom dataset')
    flags.DEFINE_string('train_record', 'sketch-train.tfrecord',
                        'Name of training tfrecord.')
    flags.DEFINE_string('test_record', 'sketch-test.tfrecord',
                        'Name of test tfrecord.')
    flags.DEFINE_spaceseplist('valid_size', ['1'],
                              'List of different validation sizes.')
    flags.DEFINE_string(
        'augment', 'custom',
        'Type of augmentation to use, as defined in libml.data.py')
    FLAGS.set_default('dataset', 'cifar10')
    FLAGS.set_default('batch', 64)
    FLAGS.set_default('lr', 0.002)
    FLAGS.set_default('train_kimg', 1 << 16)
    app.run(main)
Example #3
0
import numpy as np

import util.logger
from util.data_loader import DataLoader

################################################################################################################################

FLAGS = flags.FLAGS

flags.DEFINE_string('input_name', '0_original', help='the name of input data')

flags.DEFINE_string('output_name', None, help='the name of output data')
flags.mark_flag_as_required('output_name')

flags.DEFINE_spaceseplist('features', None, help='the selected features')
flags.mark_flag_as_required('features')

################################################################################################################################


def main(_):

    if FLAGS.log_dir:
        os.makedirs(FLAGS.log_dir, exist_ok=True)
        logging.get_absl_handler().use_absl_log_file(FLAGS.task, FLAGS.log_dir)

    logging.debug('Arguments:')
    for k, v in FLAGS.flag_values_dict().items():
        logging.debug(f'- {k}: {v}')
Example #4
0
    plt.show()


PLOTS = {'plot': plot, 'image': ''}

CONTEXTS = ['paper', 'notebook', 'talk', 'poster']
STYLES = ['whitegrid', 'darkgrid', 'ticks', 'white', 'dark']
PALETTES = ['deep', 'muted', 'bright', 'pastel', 'dark', 'colorblind']

FLAGS = flags.FLAGS
flags.DEFINE_enum('plot', 'plot', PLOTS.keys(), 'Type of plot', short_name='p')
flags.DEFINE_string('xlabel', 'x', 'Name of the x-label', short_name='x')
flags.DEFINE_string('ylabel', 'y', 'Name of the y-label', short_name='y')
flags.DEFINE_string('title', '', 'Plot title', short_name='t')
flags.DEFINE_multi_string('src', None, 'Sources file', short_name='s')
flags.DEFINE_string('sep', ',', 'Elements separator in src')
flags.DEFINE_spaceseplist('names',
                          None,
                          'Name of the columns',
                          short_name='n',
                          comma_compat=True)
flags.DEFINE_enum('context', CONTEXTS[0], CONTEXTS, 'Context of the plot')
flags.DEFINE_enum('style', STYLES[0], STYLES, 'Style of the plot')
flags.DEFINE_string('font', 'sans-sherif', 'Font of the plot')
flags.DEFINE_enum('palette', PALETTES[0], PALETTES, 'Color palette')
flags.DEFINE_string('rc', None, 'file with parameter mappings of seaborn')


def main(argv):
    PLOTS[FLAGS.plot]()
from __future__ import absolute_import, division, print_function, unicode_literals

import collections
import copy
import json
import math
import os
import re

import data_support

from absl import app, flags
from nltk.tokenize import word_tokenize

FLAGS = flags.FLAGS
flags.DEFINE_spaceseplist("json_path", "data/furniture_raw_data.json",
                          "JSON containing the dataset")
flags.DEFINE_string("save_root", "data/",
                    "Folder path to save extracted api annotations")
flags.DEFINE_string(
    "metadata_path",
    "data/furniture_metadata.csv",
    "Path to the furniture metadata CSV",
)
flags.DEFINE_enum(
    "subtask",
    "dominant-action",
    ["dominant-action", "multi-action"],
    "Selects output format; dominant-action (single action) and multi-action",
)

# sub-tasks
    'custom_cosmo', False,
    'custom cosmology? If true, read in values for sigma8 and Omega_m, otherwise use Plmack15 as default'
)
flags.DEFINE_float('Omega_m',
                   0.3089,
                   'total matter density',
                   lower_bound=0.1,
                   upper_bound=0.5)
flags.DEFINE_float('sigma_8',
                   0.8158,
                   'amplitude of matter fluctuations',
                   lower_bound=0.4,
                   upper_bound=1.3)
flags.DEFINE_boolean('PGD', False, 'whether to use PGD sharpening')
flags.DEFINE_integer('B', 2, 'force resolution factor')
flags.DEFINE_spaceseplist('zs_source', ['1.0'], 'source redshifts')
flags.DEFINE_boolean('interpolate', False,
                     'whether to interpolate between snapshots')
flags.DEFINE_boolean(
    'debug', True,
    'debug mode allows to run repeatedly with the same settings')
flags.DEFINE_boolean(
    'save3D', False,
    'whether to dump the snapshots, requires interp to be set to False')
flags.DEFINE_boolean(
    'save3Dpower', False,
    'whether to measure and save the power spectra of the snapshots')
flags.DEFINE_boolean('vjp', False, 'whether to compute the vjp')
flags.DEFINE_boolean('jvp', False, 'whether to compute the jvp')
flags.DEFINE_boolean('forward', True, 'whether to run forward model')
flags.DEFINE_boolean('analyze', False, 'whether to print out resource usage')
Example #7
0
    'shift-left', 'shift-right', 'riffle', 'unriffle', 'middle-char',
    'remove-last', 'remove-last-two', 'echo-alternating', 'echo-half', 'length',
    'echo-second-seq', 'echo-nth-seq', 'substring', 'divide-2', 'dedup']

FLAGS = flags.FLAGS
flags.DEFINE_string(
    'models_dir', '',
    'Absolute path where results folders are found.')
flags.DEFINE_string(
    'exp_prefix', 'bf_rl_iclr',
    'Prefix for all experiment folders.')
flags.DEFINE_string(
    'max_npe', '5M',
    'String representation of max NPE of the experiments.')
flags.DEFINE_spaceseplist(
    'task_list', DEFAULT_TASKS,
    'List of task names separated by spaces. If empty string, defaults to '
    '`DEFAULT_TASKS`. These are the rows of the results table.')
flags.DEFINE_string(
    'model_types', str(DEFAULT_MODELS),
    'String representation of a python list of 2-tuples, each a model_type + '
    'job description pair. Descriptions allow you to choose among different '
    'runs of the same experiment. These are the columns of the results table.')
flags.DEFINE_string(
    'csv_file', '/tmp/results_table.csv',
    'Where to write results table. Format is CSV.')
flags.DEFINE_enum(
    'data', 'success_rates', ['success_rates', 'code'],
    'What type of data to aggregate.')


def make_csv_string(table):
Example #8
0
from pathlib import Path
import os
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from absl import flags, app
from tensorboard.backend.event_processing.event_accumulator import EventAccumulator
FLAGS = flags.FLAGS

flags.DEFINE_spaceseplist(
    'logdirs', [], 'Space separated list of directories to plot results from.')
flags.DEFINE_string('output_file_name', 'out.pdf',
                    'Output file to generate plot.')
flags.DEFINE_integer('seeds', 5, 'Number of seeds per run')


def main(_):
    sns.color_palette()
    fig = plt.figure(figsize=(8, 4))
    ax = fig.gca()
    print(FLAGS.logdirs)
    for logdir in FLAGS.logdirs:
        print(logdir)
        samples = []
        rewards = []
        for seed in range(FLAGS.seeds):
            logdir_ = Path(logdir) / f'seed{seed}'
            logdir_ = logdir_ / 'val'
            event_acc = EventAccumulator(str(logdir_))
            event_acc.Reload()
            _, step_nums, vals = zip(*event_acc.Scalars('val-mean_reward'))
Example #9
0
from typing import List

from absl import app
from absl import flags
from absl import logging
from valan.framework import hyperparam_flags
from valan.r2r import custom_flags

flags.DEFINE_integer('num_train_workers', 1,
                     'Number of workers for the train actor.')
flags.DEFINE_integer('actors_per_train_worker', 1,
                     'Number of actors to run on a single train worker.')
flags.DEFINE_spaceseplist(
    'eval_data_source', '',
    'A space-separated list of sources to read the data from. This is usually '
    'name(s) of the eval splits from which the actor reads the data, e.g., '
    ' "val_seen val_unseen". NOTE: If each set of eval source contains '
    'multiple files, they can be separated by commas, e.g., '
    ' "val_seen_1,val_seen2 val_unseen_1,val_unseen2" ')
flags.DEFINE_spaceseplist(
    'num_eval_workers', '1',
    'Space-separated number of workers for each eval_data_source.')
flags.DEFINE_integer('actors_per_eval_worker', 2,
                     'Number of actors to run on a single eval worker.')

FLAGS = flags.FLAGS

# Task specific dir where main functions (e.g., learner_main, actor_main) reside
TASK_DIR = {
    'R2R': 'r2r',
    'NDH': 'r2r',
Example #10
0
# Internal dependencies.
from absl import app
from absl import flags
from absl import logging
from dm_control.autowrap import binding_generator
from dm_control.autowrap import codegen_util

import six

_MJMODEL_H = "mjmodel.h"
_MJXMACRO_H = "mjxmacro.h"

FLAGS = flags.FLAGS

flags.DEFINE_spaceseplist(
    "header_paths", None,
    "Space-separated list of paths to MuJoCo header files.")

flags.DEFINE_string("output_dir", None,
                    "Path to output directory for wrapper source files.")


def main(unused_argv):
  special_header_paths = {}

  # Get the path to the mjmodel and mjxmacro header files.
  # These header files need special handling.
  for header in (_MJMODEL_H, _MJXMACRO_H):
    for path in FLAGS.header_paths:
      if path.endswith(header):
        special_header_paths[header] = path
Example #11
0
import re
import shutil
import boto3
import botocore
from botocore.exceptions import ClientError
from absl import app
from absl import flags

raw_bucket = 'recyclops'
verified_file_dir = 'verified'
image_base_dir = './images'
saved_model_dir = 'savedModels'

flags.DEFINE_spaceseplist(
    'categories_list',
    'aluminum compost glass paper plastic trash',
    'List of categories to download images from',
)

flags.DEFINE_bool(
    'get_latest_model',
    True,
    'Get the latest saved model from s3',
)

def create_output_dir(dir_name):
    if(not os.path.isdir(dir_name) or not os.path.exists(dir_name)):
        print('Creating output directory: %s' % dir_name)
        try:
            os.mkdir(dir_name)
        except OSError:
Example #12
0
                    help="Where to save JSONL with episodes and agent summary.\
                        File should have jsonl extension.")

flags.DEFINE_integer(name="episodes",
                     default=500,
                     help="Number of games that the agent plays.",
                     lower_bound=1)

flags.DEFINE_float(
    name="survived_step_reward",
    default=0.1,
    help="Whether and how much to reward the agent for each survived step.",
    lower_bound=0.0)

flags.DEFINE_spaceseplist(name="mlp_hidden_units",
                          default=["256", "256"],
                          help="Number of units for each hidden layer.")

flags.DEFINE_float(name="learning_rate",
                   default=0.00005,
                   help="Size of the optimization step.",
                   lower_bound=0.0)

flags.DEFINE_float(name="discount_factor",
                   default=0.95,
                   help="How much future rewards are taken into account.",
                   lower_bound=0.0)

flags.DEFINE_float(name="epsilon",
                   default=0.8,
                   help="Epsilon value for epsilon-greedy.")
Example #13
0
File: main.py Project: kjjjjjjj/PAE
flags.DEFINE_float('learning_rate', default=1e-4, help='learning rate')    
flags.DEFINE_integer('batch_size',default=16, help='batch size')
flags.DEFINE_integer('max_steps', default=500000, help='training steps')    
flags.DEFINE_integer('n_steps', default=5000, help='number of training steps after which to perform the evaluation')
flags.DEFINE_enum('loss', 'AE', ['VAE','hybrid','AE'] , help='which objective to optimize')
flags.DEFINE_boolean('output_images', default=True, help='whether to output image summaries')
flags.DEFINE_boolean('full_sigma', default=True, help='whether to use constant or pixel-wise noise')
flags.DEFINE_boolean('sigma_annealing', default=False, help='whether to run a scheduled beta annealing on the KL term (VAE only)')
flags.DEFINE_boolean('beta_VAE', default=True,help='whether to run a beta VAE')
flags.DEFINE_float('beta',default=120,help='beta paramater for beta VAE')
flags.DEFINE_boolean('free_bits', default=False, help='whether to train a VAE with free bits')
flags.DEFINE_float('lambda', default=0, help='free bits parameter')
flags.DEFINE_boolean('C_annealing', default=True, help='whether to reduce available kl with training')
flags.DEFINE_float('C', default=18, help='C parameter')
flags.DEFINE_spaceseplist('augmentation', ['rot'], 'data augmentation types. Must be one or a list of the following: None, rot, flip, crop, bright')
flags.DEFINE_float('rot_angle', 5., 'maximum rotation in degrees for data augmentation') 

flags.DEFINE_integer('latent_size',default=10, help='dimensionality of latent space')
flags.DEFINE_string('activation', default='tanh', help='activation function')
flags.DEFINE_integer('n_samples', default=16, help='number of samples for encoding')
flags.DEFINE_enum('network_type', 'vae10', ['vae10','fully_connected','conv', 'infoGAN','resnet_fc','resnet_conv'], help='which type of network to use, currently supported: fully_conneted and conv')
flags.DEFINE_integer('n_filt',default=32,help='number of filters to use in the first convolutional layer')
flags.DEFINE_integer('dense_size', default=256, help='number of connnections in the fc resnet')
flags.DEFINE_integer('n_layers',default=4, help='number of layers in the fc resnet')
flags.DEFINE_boolean('bias', default=False, help='whether to use a bias in the convolutions')
flags.DEFINE_float('dropout_rate', default=0, help='dropout rate used in infoGAN')
flags.DEFINE_float('sigma', default=0.1, help='initial value of sigma in Gaussian likelihood')
flags.DEFINE_integer('class_label', default=-1, help='number of specific class to train on. -1 for all classes')
flags.DEFINE_string('tag', default='test', help='optional additional tag that is added to name of the run')
Example #14
0
from botocore.exceptions import ClientError
from signal import signal, SIGINT
from absl import app
from absl import flags

WINDOW_NAME = "Recyclops"
raw_bucket = 'recyclops'
verified_file_dir = 'verified'
file_type = '.jpg'
FONT_TYPE = cv2.FONT_HERSHEY_SIMPLEX
FONT_COLOR_DISPLAY = (81, 237, 14)
FONT_COLOR_CATEGORY = (237, 181, 14)

flags.DEFINE_spaceseplist(
    'input_categories_list',
    'aluminum compost glass paper plastic trash',
    'List of catoagories to clean files from',
)
flags.DEFINE_spaceseplist(
    'output_categories_list',
    'aluminum compost glass paper plastic trash invalid',
    'List of categories to add cleaned files to',
)


def exit_handler(signal_received, frame):
    print("Forced exit...")
    cv2.destroyAllWindows()
    exit(0)

    'experiment run and plot clustering results.')

# Flags for generating simulated clusters of LDSs.
flags.DEFINE_boolean('generate_diagonalizable_only', False, 'Whether to only '
                     'generate diagonalizable LDSs.')
flags.DEFINE_integer('num_clusters', 2, 'Number of clusters in experiments.')
flags.DEFINE_integer('num_systems', 100,
                     'Number of dynamical systems to cluster.')
flags.DEFINE_integer('hidden_state_dim', 2, 'Hidden state dim in experiments.')
flags.DEFINE_integer('input_dim', 1, 'Input dim in experiments.')
flags.DEFINE_boolean(
    'hide_inputs', True, 'Whether the inputs are observable '
    'to the clustering algorithm.')
flags.DEFINE_spaceseplist(
    'cluster_center_eigvalues', None, 'Optional List of lists of eigenvalues '
    'for each cluster. The outer list is space separated, and the inner list '
    'is comma separated. E.g. `0.9,0.1 0.5,0.1`. When null, generate random '
    'clusters centers by drawing eigenvalues uniformly from [-1, 1].')
flags.DEFINE_float(
    'cluster_center_dist_lower_bound', 0.2, 'Desired distance lower bound '
    'between cluster centers. Only applicable when cluster_center_eigvalues '
    'is None. Generate cluster centers until distance >= this val.')
flags.DEFINE_float('cluster_radius', 0.05,
                   'Radius of each dynamical system cluster.')
flags.DEFINE_integer('random_seed', 0, 'Random seed.')
flags.DEFINE_integer('num_repeat', 1,
                     'Number of repeated runs for each fixed seq len.')

# Flags for output sequences from LDSs.
flags.DEFINE_integer('min_seq_len', 10, 'Min seq len in experiments.')
flags.DEFINE_integer('max_seq_len', 1000, 'Max seq len in experiments.')
Example #16
0
                  repeat=FLAGS.repeat)
    model.train(FLAGS.train_kimg << 10, FLAGS.report_kimg << 10)


if __name__ == '__main__':
    utils.setup_tf()
    flags.DEFINE_float('wd', 0.02, 'Weight decay.')
    flags.DEFINE_float('ema', 0.999, 'Exponential moving average of params.')
    flags.DEFINE_float('beta', 0.5, 'Mixup beta distribution.')
    flags.DEFINE_integer('scales', 0,
                         'Number of 2x2 downscalings in the classifier.')
    flags.DEFINE_integer('filters', 32, 'Filter size of convolutions.')
    flags.DEFINE_integer('repeat', 4, 'Number of residual layers per stage.')
    flags.DEFINE_bool('custom_dataset', True,
                      'True if using a custom dataset.')
    flags.DEFINE_integer('nclass', 42,
                         'Number of classes present in custom dataset.')
    flags.DEFINE_integer('img_size', 32, 'Size of Images in custom dataset')
    flags.DEFINE_spaceseplist('label_size', ['250', '1000', '2000', '124994'],
                              'List of different labeled data sizes.')
    flags.DEFINE_spaceseplist('valid_size', ['1', '500'],
                              'List of different validation sizes.')
    flags.DEFINE_string(
        'augment', 'custom',
        'Type of augmentation to use, as defined in libml.data.py')
    FLAGS.set_default('dataset', 'cifar10.3@250-5000')
    FLAGS.set_default('batch', 64)
    FLAGS.set_default('lr', 0.002)
    FLAGS.set_default('train_kimg', 1 << 16)
    app.run(main)
Example #17
0
FLAGS = flags.FLAGS
flags.DEFINE_enum('action', None,
                  ['boot', 'start', 'mini_boot', 'ping', 'kill', 'info'],
                  'The action to perform against the emulator images')
flags.DEFINE_string(
    'skin', None, '[BOOT ONLY] The skin parameter to pass '
    'to the emulator')
flags.DEFINE_string('density', None, '[bazel ONLY] Density of the lcd screen')
flags.DEFINE_string(
    'cache', None, '[bazel ONLY] Size of cache partition in mb '
    '- currently not functioning')
flags.DEFINE_string('vm_size', None, '[bazel ONLY] VM heap size in mb')
flags.DEFINE_integer('memory', None,
                     '[bazel ONLY] the memory for the emulator')
flags.DEFINE_spaceseplist(
    'system_images', None, '[bazel ONLY] the system '
    'images to boot the emulator with')
flags.DEFINE_spaceseplist('apks', None, '[START ONLY] the apks to install')
flags.DEFINE_spaceseplist('system_apks', None, '[START ONLY] system apks to '
                          'install')
flags.DEFINE_boolean(
    'preverify_apks', False, '[START ONLY] if true the apks '
    'will be preverified upon install (normal production  '
    'behaviour). It defaults to disabled because some of the '
    'verification failures are overkill in the bazel '
    'environment. For example it is very easy to have '
    'both a test apk and app apk contain a ref to the '
    'same class file (eg Maps from the guava jars) and '
    'this kills the verifier (out of the fear that the '
    '2 apks have different class definitions and the '
    'optimizations in the app apk will bypass the test '
Example #18
0
# #!/usr/bin/env python3
# -*- coding: utf-8 -*-
# .setNear("America")
import datetime
from datetime import date
# import GetOldTweets3 as got
from manager.TweetCriteria import TweetCriteria
from manager.TweetManager import TweetManager
from tqdm import tqdm
import time
from absl import app, flags
import os

FLAGS = flags.FLAGS
flags.DEFINE_string("hashtag", None, "hashtag name")
flags.DEFINE_spaceseplist("start", "2020 1 1", "start date")
flags.mark_flag_as_required("hashtag")


def main(args):
    hashtag = FLAGS.hashtag
    y = int(FLAGS.start[0])
    m = int(FLAGS.start[1])
    d = int(FLAGS.start[2])
    start = date(y, m, d)
    if not os.path.isdir(f'./{hashtag}'):
        os.mkdir(f'./{hashtag}')

    while (start < date.today()):
        since = start
        until = since
Example #19
0
import cv2
import numpy as np
import matplotlib.pyplot as plt

from absl import app, flags, logging
from absl.flags import FLAGS

"""
计算 mAP
"""

flags.DEFINE_boolean('no_animation', True, 'no animation is shown')
flags.DEFINE_boolean('no_plot', True, 'no plot is shown')
flags.DEFINE_boolean('quiet', False, 'minimalistic console output')
# e.g. python mAP.py -ignore "person book"
flags.DEFINE_spaceseplist('ignore', None, 'ignore a list of classes')
# e.g. python mAP.py -set_class_iou "person 0.7 book 0.6"
flags.DEFINE_spaceseplist('set_class_iou', None, 'set IoU for a specific class')

# 见 http://host.robots.ox.ac.uk/pascal/VOC/voc2012/htmldoc/devkit_doc.html#4.4
MINOVERLAP = 0.5

'''
    0,0 -------------> x (width)
     |
     |  (Left,Top)
     |      *_________
     |      |         |
     |      |         |
     y      |_________|
  (height)            *
Example #20
0
# limitations under the License.
"""Generate conformer features to be used for training/predictions."""

import multiprocessing as mp
import pickle
from typing import List

from absl import app
from absl import flags
import numpy as np

# pylint: disable=g-bad-import-order
import conformer_utils
import datasets

_SPLITS = flags.DEFINE_spaceseplist(
    'splits', ['test'], 'Splits to compute conformer features for.')

_OUTPUT_FILE = flags.DEFINE_string(
    'output_file',
    None,
    required=True,
    help='Output file name to write the generated conformer features to.')

_NUM_PROCS = flags.DEFINE_integer(
    'num_parallel_procs', 64,
    'Number of parallel processes to use for conformer generation.')


def generate_conformer_features(smiles: List[str]) -> List[np.ndarray]:
    # Conformer generation is a CPU-bound task and hence can get a boost from
    # parallel processing.
Example #21
0
flags.DEFINE_boolean('move', False, 'Move operation', short_name='m')
flags.DEFINE_boolean('new', False, 'New operation', short_name='n')
flags.DEFINE_boolean('remove', False, 'Remove operation', short_name='r')
flags.DEFINE_boolean('rename', False, 'Rename operation.', short_name='rn')
flags.DEFINE_boolean('summary',
                     False,
                     'Print a summary of the task lists.',
                     short_name='s')
flags.DEFINE_boolean('toggle', False, 'Toggle operation', short_name='t')
flags.DEFINE_boolean('quit', False, 'Quit operation', short_name='q')

# Flags related to options on above operations.
flags.DEFINE_integer('after', -1,
                     'The index of the task that this should be after')
flags.DEFINE_string('date', '', 'A date in MM/DD/YYYY format.')
flags.DEFINE_spaceseplist('index', '', 'Index of task.', short_name='i')
flags.DEFINE_boolean('force',
                     False,
                     'Forcibly perform the operation.',
                     short_name='f')
flags.DEFINE_boolean('color',
                     True,
                     'Display output with terminal colors.',
                     short_name='o')
flags.DEFINE_string('note', '', 'A note to attach to a task.')
flags.DEFINE_integer('parent', 0, 'Index of parent task.', short_name='p')

flags.DEFINE_integer('tasklist', 0, 'Id of task list to operate on.')
flags.DEFINE_string('title', '', 'The name of the task.')

USAGE = ('[-a]dd, [-c]lear, [-d]elete, [-e]dit, [-r]emove task, [-m]ove, ' +
    def test_write_help_in_xmlformat(self):
        fv = flags.FlagValues()
        # Since these flags are defined by the top module, they are all key.
        flags.DEFINE_integer('index', 17, 'An integer flag', flag_values=fv)
        flags.DEFINE_integer('nb_iters',
                             17,
                             'An integer flag',
                             lower_bound=5,
                             upper_bound=27,
                             flag_values=fv)
        flags.DEFINE_string('file_path',
                            '/path/to/my/dir',
                            'A test string flag.',
                            flag_values=fv)
        flags.DEFINE_boolean('use_gpu',
                             False,
                             'Use gpu for performance.',
                             flag_values=fv)
        flags.DEFINE_enum('cc_version',
                          'stable', ['stable', 'experimental'],
                          'Compiler version to use.',
                          flag_values=fv)
        flags.DEFINE_list('files',
                          'a.cc,a.h,archive/old.zip',
                          'Files to process.',
                          flag_values=fv)
        flags.DEFINE_list('allow_users', ['alice', 'bob'],
                          'Users with access.',
                          flag_values=fv)
        flags.DEFINE_spaceseplist('dirs',
                                  'src libs bins',
                                  'Directories to create.',
                                  flag_values=fv)
        flags.DEFINE_multi_string('to_delete', ['a.cc', 'b.h'],
                                  'Files to delete',
                                  flag_values=fv)
        flags.DEFINE_multi_integer('cols', [5, 7, 23],
                                   'Columns to select',
                                   flag_values=fv)
        flags.DEFINE_multi_enum('flavours', ['APPLE', 'BANANA'],
                                ['APPLE', 'BANANA', 'CHERRY'],
                                'Compilation flavour.',
                                flag_values=fv)
        # Define a few flags in a different module.
        module_bar.define_flags(flag_values=fv)
        # And declare only a few of them to be key.  This way, we have
        # different kinds of flags, defined in different modules, and not
        # all of them are key flags.
        flags.declare_key_flag('tmod_bar_z', flag_values=fv)
        flags.declare_key_flag('tmod_bar_u', flag_values=fv)

        # Generate flag help in XML format in the StringIO sio.
        sio = io.StringIO() if six.PY3 else io.BytesIO()
        fv.write_help_in_xml_format(sio)

        # Check that we got the expected result.
        expected_output_template = EXPECTED_HELP_XML_START
        main_module_name = sys.argv[0]
        module_bar_name = module_bar.__name__

        if main_module_name < module_bar_name:
            expected_output_template += EXPECTED_HELP_XML_FOR_FLAGS_FROM_MAIN_MODULE
            expected_output_template += EXPECTED_HELP_XML_FOR_FLAGS_FROM_MODULE_BAR
        else:
            expected_output_template += EXPECTED_HELP_XML_FOR_FLAGS_FROM_MODULE_BAR
            expected_output_template += EXPECTED_HELP_XML_FOR_FLAGS_FROM_MAIN_MODULE

        expected_output_template += EXPECTED_HELP_XML_END

        # XML representation of the whitespace list separators.
        whitespace_separators = _list_separators_in_xmlformat(
            string.whitespace, indent='    ')
        expected_output = (expected_output_template % {
            'basename_of_argv0': os.path.basename(sys.argv[0]),
            'usage_doc': sys.modules['__main__'].__doc__,
            'main_module_name': main_module_name,
            'module_bar_name': module_bar_name,
            'whitespace_separators': whitespace_separators
        })

        actual_output = sio.getvalue()
        self.assertMultiLineEqual(expected_output, actual_output)

        # Also check that our result is valid XML.  minidom.parseString
        # throws an xml.parsers.expat.ExpatError in case of an error.
        xml.dom.minidom.parseString(actual_output)
Example #23
0
"""Trains an nltk language model."""

import random
import pickle
from typing import List, Tuple
from nltk.lm.preprocessing import padded_everygram_pipeline
from nltk.lm import Laplace
from absl import app
from absl import flags
from tqdm import tqdm

FLAGS = flags.FLAGS

flags.DEFINE_string('string_to_normalize', None, 'the string to normalize')
flags.DEFINE_string('language', None, 'the language to normalize')
flags.DEFINE_spaceseplist('data_source', None, 'data source to preprocess')
flags.DEFINE_string('pass_valid', "token",
                    'pass only valid tokens or sentences')
flags.DEFINE_string('experiment', None, 'the normalization experiment to run')


def main(argv):
    """Trains an nltk language model.

    Loads in files of normalized text, partitions them into a train partition
    (3/4 of data) and a test partition (last 1/4 of data). Uses Laplace
    smoothing for unseen ngrams.
    """
    if len(argv) > 1:
        raise app.UsageError("Too many command-line arguments.")
Example #24
0
"""Extract action API supervision for the SIMMC Fashion dataset.

Author(s): Satwik Kottur
"""

from __future__ import absolute_import, division, print_function, unicode_literals

from absl import flags
from absl import app
import ast
import json
import os

FLAGS = flags.FLAGS
flags.DEFINE_spaceseplist("json_path", "data/furniture_pilot_oct24.json",
                          "JSON containing the dataset")
flags.DEFINE_string("save_root", "data/",
                    "Folder path to save extraced api annotations")
flags.DEFINE_string("metadata_path", "data/fashion_metadata.json",
                    "Path to fashion metadata")


def extract_actions(input_json_file):
    """Extract action API for SIMMC fashion.

    Args:
        input_json_file: JSON data file to extraction actions
    """
    print("Reading: {}".format(input_json_file))
    with open(input_json_file, "r") as file_id:
        raw_data = json.load(file_id)
Example #25
0
from fslks.experiments import Predictions, Task

os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'

from tensorflow_datasets.core.utils import gcs_utils

from absl import flags
from absl import app
from absl import logging

from fslks import tasks
from fslks import experiments
from fslks import evaluation

FLAGS = flags.FLAGS
flags.DEFINE_spaceseplist("training_tasks", [],
                          "One or more tasks to be used for pretraining")
flags.DEFINE_spaceseplist(
    "validation_tasks", [],
    "One or more tasks to be used for validation during pretraining")
flags.DEFINE_spaceseplist(
    "testing_tasks", [],
    "One or more tasks to be used for evaluating pretrained models")

flags.DEFINE_integer('num_epochs', 10, 'Number of epochs to train')
flags.DEFINE_integer('warmup_epochs', 3,
                     'Number of warmup epochs before normal training')
flags.DEFINE_integer('batch_size', 8, 'Batch size to use for training')
flags.DEFINE_integer('prefetch_size', -1,
                     'Number of batches to prefetch (default: AUTOTUNE)')
flags.DEFINE_integer('eval_batch_size', 8,
                     'Batch size to use when evaluating validation/test sets')
Example #26
0
from absl import logging
import tensorflow as tf
tfk = tf.keras

import bdlb
from bdlb.core import plotting
from baselines.diabetic_retinopathy_diagnosis.mc_dropout.model import VGGDrop
from baselines.diabetic_retinopathy_diagnosis.ensemble_mc_dropout.model import predict

##########################
# Command line arguments #
##########################
FLAGS = flags.FLAGS
flags.DEFINE_spaceseplist(
    name="model_checkpoints",
    default=None,
    help="Paths to checkpoints of the models.",
)
flags.DEFINE_string(
    name="output_dir",
    default="/tmp",
    help="Path to store model, tensorboard and report outputs.",
)
flags.DEFINE_enum(
    name="level",
    default="medium",
    enum_values=["realworld", "medium"],
    help="Downstream task level, one of {'medium', 'realworld'}.",
)
flags.DEFINE_integer(
    name="batch_size",
Example #27
0
from absl import app, flags
from functools import partial
import string

flags.DEFINE_spaceseplist("features", None, "Features taken into account")
flags.DEFINE_string("input", None, "Input path")
flags.DEFINE_string("output", None, "Output path")
flags.DEFINE_string("vocabulary", None, "vocabulary")
flags.DEFINE_string("bases", None, "vocabulary")
flags.DEFINE_string("supertags", None, "vocabulary")
flags.DEFINE_string("suffixes", None, "vocabulary")
flags.DEFINE_string("prefixes", None, "vocabulary")

vocab = set()
superbases = {}
supertags = {}
suffixes = set()
prefixes = set()


def _load_set(path, data_set):
    with open(path, "r") as ifile:
        for line in ifile:
            line = line if line[-1] != "\n" else line[:-1]
            data_set.add(line)


def _load_dict(path, data_dict):
    with open(path, "r") as ifile:
        for line in ifile:
            line = line if line[-1] != "\n" else line[:-1]