Example #1
0
def sample_821_1():
    """
    8.2.1_1 选股使用示例
    :return:
    """
    # 选股条件threshold_ang_min=0.0, 即要求股票走势为向上上升趋势
    stock_pickers = [{'class': AbuPickRegressAngMinMax,
                      'threshold_ang_min': 0.0, 'reversed': False}]

    # 从这几个股票里进行选股,只是为了演示方便
    # 一般的选股都会是数量比较多的情况比如全市场股票
    choice_symbols = ['usNOAH', 'usSFUN', 'usBIDU', 'usAAPL', 'usGOOG',
                      'usTSLA', 'usWUBA', 'usVIPS']
    benchmark = AbuBenchmark()
    capital = AbuCapital(1000000, benchmark)
    kl_pd_manager = AbuKLManager(benchmark, capital)
    stock_pick = AbuPickStockWorker(capital, benchmark, kl_pd_manager,
                                    choice_symbols=choice_symbols,
                                    stock_pickers=stock_pickers)
    stock_pick.fit()
    # 打印最后的选股结果
    print('stock_pick.choice_symbols:', stock_pick.choice_symbols)

    # 从kl_pd_manager缓存中获取选股走势数据,注意get_pick_stock_kl_pd为选股数据,get_pick_time_kl_pd为择时
    kl_pd_noah = kl_pd_manager.get_pick_stock_kl_pd('usNOAH')
    # 绘制并计算角度
    deg = ABuRegUtil.calc_regress_deg(kl_pd_noah.close)
    print('noah 选股周期内角度={}'.format(round(deg, 3)))
Example #2
0
File: c8.py Project: fuimaz/abu
def sample_811():
    """
    8.1.1 买入因子的实现
    :return:
    """
    # buy_factors 60日向上突破,42日向上突破两个因子
    buy_factors = [{
        'xd': 60,
        'class': AbuFactorBuyBreak
    }, {
        'xd': 42,
        'class': AbuFactorBuyBreak
    }]
    benchmark = AbuBenchmark()
    capital = AbuCapital(1000000, benchmark)
    kl_pd_manager = AbuKLManager(benchmark, capital)
    # 获取TSLA的交易数据
    kl_pd = kl_pd_manager.get_pick_time_kl_pd('usTSLA')
    abu_worker = AbuPickTimeWorker(capital, kl_pd, benchmark, buy_factors,
                                   None)
    abu_worker.fit()

    orders_pd, action_pd, _ = ABuTradeProxy.trade_summary(abu_worker.orders,
                                                          kl_pd,
                                                          draw=True)

    ABuTradeExecute.apply_action_to_capital(capital, action_pd, kl_pd_manager)
    capital.capital_pd.capital_blance.plot()
    plt.show()
Example #3
0
File: p7.py Project: fuimaz/abu
def sample_821_2():
    """
    8.2.1_2 ABuPickStockExecute
    :return:
    """
    stock_pickers = [{
        'class': AbuPickRegressAngMinMax,
        'threshold_ang_min': 0.0,
        'threshold_ang_max': 10.0,
        'reversed': False
    }]

    choice_symbols = [
        '601398', '601988', '601939', '603993', '600999', '300059', '600900',
        '601328', '601288', '600887', '600029', '000002'
    ]
    benchmark = AbuBenchmark()
    capital = AbuCapital(1000000, benchmark)
    kl_pd_manager = AbuKLManager(benchmark, capital)

    print(
        'ABuPickStockExecute.do_pick_stock_work:\n',
        ABuPickStockExecute.do_pick_stock_work(choice_symbols, benchmark,
                                               capital, stock_pickers))

    kl_pd_sfun = kl_pd_manager.get_pick_stock_kl_pd('601398')
    print('sfun 选股周期内角度={}'.format(
        round(ABuRegUtil.calc_regress_deg(kl_pd_sfun.close), 3)))
Example #4
0
File: c8.py Project: fuimaz/abu
def sample_821_2():
    """
    8.2.1_2 ABuPickStockExecute
    :return:
    """
    stock_pickers = [{
        'class': AbuPickRegressAngMinMax,
        'threshold_ang_min': 0.0,
        'threshold_ang_max': 10.0,
        'reversed': False
    }]

    choice_symbols = [
        'usNOAH', 'usSFUN', 'usBIDU', 'usAAPL', 'usGOOG', 'usTSLA', 'usWUBA',
        'usVIPS'
    ]
    benchmark = AbuBenchmark()
    capital = AbuCapital(1000000, benchmark)
    kl_pd_manager = AbuKLManager(benchmark, capital)

    print(
        'ABuPickStockExecute.do_pick_stock_work:\n',
        ABuPickStockExecute.do_pick_stock_work(choice_symbols, benchmark,
                                               capital, stock_pickers))

    kl_pd_sfun = kl_pd_manager.get_pick_stock_kl_pd('usSFUN')
    print('sfun 选股周期内角度={}'.format(
        round(ABuRegUtil.calc_regress_deg(kl_pd_sfun.close), 3)))
Example #5
0
def sample_b3_4():
    """
    【示例4】abu量化系统选股结合相关性,编写相关性选股策略
    AbuPickSimilarNTop源代码请自行阅读,只简单示例使用。
    :return:
    """
    from abupy import AbuPickSimilarNTop
    from abupy import AbuPickStockWorker
    from abupy import AbuBenchmark, AbuCapital, AbuKLManager

    benchmark = AbuBenchmark()

    # 选股因子AbuPickSimilarNTop, 寻找与usTSLA相关性不低于0.95的股票
    # 这里内部使用以整个市场作为观察者方式计算,即取值范围0-1
    stock_pickers = [{
        'class': AbuPickSimilarNTop,
        'similar_stock': 'usTSLA',
        'threshold_similar_min': 0.95
    }]

    # 从这几个股票里进行选股,只是为了演示方便,一般的选股都会是数量比较多的情况比如全市场股票
    choice_symbols = [
        'usNOAH', 'usSFUN', 'usBIDU', 'usAAPL', 'usGOOG', 'usTSLA', 'usWUBA',
        'usVIPS'
    ]

    capital = AbuCapital(1000000, benchmark)
    kl_pd_manager = AbuKLManager(benchmark, capital)
    stock_pick = AbuPickStockWorker(capital,
                                    benchmark,
                                    kl_pd_manager,
                                    choice_symbols=choice_symbols,
                                    stock_pickers=stock_pickers)
    stock_pick.fit()
    print('stock_pick.choice_symbols:\n', stock_pick.choice_symbols)
    """
        通过选股因子first_choice属性执行批量优先选股操作,具体阅读源代码
    """
    # 选股因子AbuPickSimilarNTop, 寻找与usTSLA相关性不低于0.95的股票
    # 通过设置'first_choice':True,进行优先批量操作,默认从对应市场选股
    stock_pickers = [{
        'class': AbuPickSimilarNTop,
        'first_choice': True,
        'similar_stock': 'usTSLA',
        'threshold_similar_min': 0.95
    }]
    benchmark = AbuBenchmark()
    capital = AbuCapital(1000000, benchmark)
    kl_pd_manager = AbuKLManager(benchmark, capital)
    stock_pick = AbuPickStockWorker(capital,
                                    benchmark,
                                    kl_pd_manager,
                                    choice_symbols=None,
                                    stock_pickers=stock_pickers)
    stock_pick.fit()
    print('stock_pick.choice_symbols:\n', stock_pick.choice_symbols)
Example #6
0
File: c8.py Project: 3774257/abu
def sample_821_2():
    """
    8.2.1_2 ABuPickStockExecute
    :return:
    """
    stock_pickers = [{'class': AbuPickRegressAngMinMax,
                      'threshold_ang_min': 0.0, 'threshold_ang_max': 10.0,
                      'reversed': False}]

    choice_symbols = ['usNOAH', 'usSFUN', 'usBIDU', 'usAAPL', 'usGOOG',
                      'usTSLA', 'usWUBA', 'usVIPS']
    benchmark = AbuBenchmark()
    capital = AbuCapital(1000000, benchmark)
    kl_pd_manager = AbuKLManager(benchmark, capital)

    print('ABuPickStockExecute.do_pick_stock_work:\n', ABuPickStockExecute.do_pick_stock_work(choice_symbols, benchmark,
                                                                                              capital, stock_pickers))

    kl_pd_sfun = kl_pd_manager.get_pick_stock_kl_pd('usSFUN')
    print('sfun 选股周期内角度={}'.format(round(ABuRegUtil.calc_regress_deg(kl_pd_sfun.close), 3)))
Example #7
0
File: c8.py Project: 3774257/abu
def sample_811():
    """
    8.1.1 买入因子的实现
    :return:
    """
    # buy_factors 60日向上突破,42日向上突破两个因子
    buy_factors = [{'xd': 60, 'class': AbuFactorBuyBreak},
                   {'xd': 42, 'class': AbuFactorBuyBreak}]
    benchmark = AbuBenchmark()
    capital = AbuCapital(1000000, benchmark)
    kl_pd_manager = AbuKLManager(benchmark, capital)
    # 获取TSLA的交易数据
    kl_pd = kl_pd_manager.get_pick_time_kl_pd('usTSLA')
    abu_worker = AbuPickTimeWorker(capital, kl_pd, benchmark, buy_factors, None)
    abu_worker.fit()

    orders_pd, action_pd, _ = ABuTradeProxy.trade_summary(abu_worker.orders, kl_pd, draw=True)

    ABuTradeExecute.apply_action_to_capital(capital, action_pd, kl_pd_manager)
    capital.capital_pd.capital_blance.plot()
    plt.show()
Example #8
0
    # 1、这里是买入突破
    # 创建60日向上突破,42日向上突破两个因子
    buy_factors = [{
        'xd': 60,
        'class': AbuFactorBuyBreak
    }, {
        'xd': 42,
        'class': AbuFactorBuyBreak
    }]
    # 基准利润
    benchmark = AbuBenchmark()

    # 现金和基准利润
    capital = AbuCapital(1000000, benchmark)
    # 多线程管理类
    kl_pd_manager = AbuKLManager(benchmark, capital)
    # 获取TSLA的股票信息
    kl_pd = kl_pd_manager.get_pick_time_kl_pd('usTSLA')
    # 准备开始工作
    abu_worker = AbuPickTimeWorker(capital, kl_pd, benchmark, buy_factors,
                                   None)
    abu_worker.fit()
    # 画出哪几个点可以买入,以及最终的收益情况
    # orders_pd,action_pd,_=ABuTradeProxy.trade_summary(abu_worker.orders,kl_pd,draw=True)
    orders_pd, action_pd, _ = ABuTradeProxy.trade_summary(abu_worker.orders,
                                                          kl_pd,
                                                          draw=False)

    # 上面是从股价角度,下面从我们的资金来看
    # ABuTradeExecute.apply_action_to_capital(capital, action_pd, kl_pd_manager)
    # print(capital.capital_pd.head())
Example #9
0
File: p7.py Project: fuimaz/abu
def sample_821_3():
    """
    8.2.1_2 ABuPickStockExecute
    :return:
    """
    stock_pickers = [{
        'class': abupy.FuWeekVolumeBoll,
        'threshold_ang_min': 0.0,
        'threshold_ang_max': 10.0,
        'reversed': False
    }]

    choice_symbols = [
        '601398', '601988', '601939', '603993', '600999', '300059', '600900',
        '601328', '601288', '600887', '600029', '000002'
    ]
    choice_symbols = [
        'sz000983', 'sh600338', 'sh600511', 'sh600196', 'sh600423', 'sz399136',
        'sz002044', 'sh601800', 'sz300132', 'sz300133', 'sh000821', 'sz300003',
        'sz300009', 'sz200045', 'sh600998', 'sz300313', 'sh601607', 'sz002644',
        'sh600697', 'sz000627', 'sh000003', 'sz399302', 'sh600984', 'sz399301',
        'sz000916', 'sz000911', 'sz000912', 'sz000688', 'sh600079', 'sh601101',
        'sz000861', 'sz000736', 'sz002053', 'sz000048', 'sh600703', 'sh000814',
        'sz300015', 'sh000818', 'sz399352', 'sz399356', 'sh900911', 'sh600395',
        'sh000075', 'sz002323', 'sh000101', 'sh600285', 'sh600882', 'sz000789',
        'sh601398', 'sz000898', 'sh601390', 'sh601009', 'sh601001', 'sz000525',
        'sh600713', 'sh601628', 'sz399299', 'sz399298', 'sh600800', 'sh000808',
        'sh900909', 'sh900908', 'sh000061', 'sh000068', 'sh000116', 'sz000617',
        'sh600535', 'sz000792', 'sz000889', 'sz000065', 'sh601015', 'sz000089',
        'sh600871', 'sz002412', 'sz399400', 'sz399402', 'sz399404', 'sh000057',
        'sh900930', 'sh900936', 'sh900934', 'sh900935', 'sh600267', 'sz000650',
        'sz399978', 'sh600485', 'sh601021', 'sh601601', 'sh600208', 'sh601288',
        'sh600062', 'sh600015', 'sh600016', 'sz300197', 'sz300199', 'sz399413',
        'sz399411', 'sz399416', 'sh000134', 'sh000136', 'sh000139', 'sz002007',
        'sh600258', 'sh600123', 'sz000511', 'sh601618', 'sh600745', 'sz399170',
        'sh000923', 'sz399319', 'sz399554', 'sz399555', 'sz002530', 'sh000145',
        'sz002070', 'sh000149', 'sz399220', 'sh601998', 'sh600111', 'sh600023',
        'sz000560', 'sh601699', 'sz399305', 'sz399431', 'sz000766', 'sz399436',
        'sz399230', 'sz399237', 'sz002661', 'sz002599', 'sh000155', 'sh000152',
        'sh000151', 'sh600806', 'sh601988', 'sh600693', 'sh600699', 'sh600582',
        'sz000995', 'sh600566', 'sh601318', 'sz399150', 'sz399441', 'sz399200',
        'sh000841', 'sh600917', 'sz002128', 'sh600176', 'sz000968', 'sh600771',
        'sh600579', 'sh600578', 'sh600572', 'sh600681', 'sh600680', 'sz399140',
        'sz000540', 'sz000545', 'sz200022', 'sz200026', 'sz200025', 'sz399210',
        'sz200029', 'sz002601', 'sz002656', 'sz002204', 'sz002737', 'sz000748',
        'sh600965', 'sz002135', 'sh000934', 'sh601169', 'sh601899', 'sh601898',
        'sh600549', 'sh600546', 'sh600545', 'sz000778', 'sh600141', 'sh600145',
        'sh601231', 'sz399139', 'sz000630', 'sz000613', 'sz399137', 'sz399130',
        'sz399131', 'sz399132', 'sz399133', 'sz200019', 'sz300146', 'sz300144',
        'sz399661', 'sz002701', 'sh600971', 'sz002382', 'sz002385', 'sh600085',
        'sh603158', 'sz002602', 'sh601939', 'sh600007', 'sz399645', 'sh600000',
        'sh601339', 'sh601336', 'sh000125', 'sz399674', 'sh000974', 'sz399160',
        'sz002653', 'sz002717', 'sz200726', 'sz399647', 'sz300294', 'sh000100',
        'sz300347', 'sh600348', 'sh000933', 'sh600401', 'sh000109', 'sz000034',
        'sh600623', 'sz000581', 'sz000672', 'sz300028', 'sh603368', 'sh000023',
        'sh000021', 'sz002198', 'sh600432', 'sh603989', 'sz000937', 'sh600508',
        'sh600500', 'sh000159', 'sz000732', 'sh600188', 'sz000598', 'sz000029',
        'sz000028', 'sz399394', 'sh000832', 'sz300036', 'sz200053', 'sz300326',
        'sz002742', 'sz300253', 'sh000013', 'sh000011'
    ]
    # choice_symbols = ['002656', '000903']
    benchmark = AbuBenchmark(n_folds=15)
    capital = AbuCapital(1000000, benchmark)
    kl_pd_manager = AbuKLManager(benchmark, capital)

    stock_pickers = ABuPickStockExecute.do_pick_stock_work(
        None,
        benchmark,
        # stock_pickers = ABuPickStockExecute.do_pick_stock_work(choice_symbols, benchmark,
        capital,
        stock_pickers)
    print('ABuPickvStockExecute.do_pick_stock_work:\n', stock_pickers)
    for stock_symbol in stock_pickers:
        if ~fetch_stock_base_info(stock_symbol):
            continue
        draw_candle(stock_symbol, 15)
Example #10
0
#     stock_kd = pd.getByName(stock)


ABuEnv.g_cpu_cnt = 4#并发运行线程数
ABuEnv.draw_order_num = 0 #要绘制的订单数
ABuEnv.g_data_fetch_mode = EMarketDataFetchMode.E_DATA_FETCH_FORCE_NET  #强制从网络获取
#ABuEnv.g_data_fetch_mode = EMarketDataFetchMode.E_DATA_FETCH_FORCE_LOCAL  #强制本地,可多线程

ABuEnv.g_market_source = EMarketSourceType.E_MARKET_SOURCE_tx  #作用同上点击效果。腾讯数据源(美股,A股,港股)
ABuEnv.g_market_target = EMarketTargetType.E_MARKET_TARGET_CN

benchmark = AbuBenchmark(n_folds=1, start=None, end=None)
# 资金类初始化
capital = AbuCapital(1000000, benchmark, user_commission_dict=None)
# kl数据管理类初始化
kl_pd_manager = AbuKLManager(benchmark, capital)
# 批量获取择时kl数据
industryPchangeAllDaetDic = dict()
if __name__ == '__main__':
    kl_pd_manager.batch_get_pick_time_kl_pd(choice_symbols, n_process=4)
    kl_pd_dick = kl_pd_manager.pick_kl_pd_dict['pick_time']
    for stockCode, stockData in kl_pd_dick.items():
        if stockData is None:
            continue
        pd_data = stockData.p_change
        stockIndustryNames = industry_data['c_name'][industry_data.code == stockCode]
        for _, stockIndustryName in stockIndustryNames.items():
            if stockIndustryName in industryPchangeAllDaetDic.keys():
                left = industryPchangeAllDaetDic[stockIndustryName]
                right = pd.DataFrame({'date': stockData.date, stockCode: stockData.p_change})
                industryPchangeAllDaetDic[stockIndustryName] = pd.merge(left, right, on='date', how='outer')
Example #11
0
    stock_pickers = [{
        'class': AbuPickRegressAngMinMax,
        'threshold_ang_min': 0.0,
        'received': False
    }]

    # 一般而言,我们是遍历整个股市来选股,这里我们就选择以下几个股票来做演示
    choice_symbols = [
        'usNOAH', 'usSFUN', 'usBIDU', 'usAAPL', 'usGOOG', 'usTSLA', 'usWUBA',
        'usVIPS'
    ]

    # 开始执行
    benchmark = AbuBenchmark()
    capital = AbuCapital(1000000, benchmark)
    kl_pd_manager = AbuKLManager(benchmark, capital)
    stock_pick = AbuPickStockWorker(capital,
                                    benchmark,
                                    kl_pd_manager,
                                    choice_symbols=choice_symbols,
                                    stock_pickers=stock_pickers)
    stock_pick.fit()

    print(stock_pick.choice_symbols)

    # 绘图
    kl_pd_SFUN = kl_pd_manager.get_pick_stock_kl_pd('usNOAH')
    deg = ABuRegUtil.calc_regress_deg(kl_pd_SFUN.close)
    print(deg)

    # 上面使用worker的操作太麻烦,下面可以直接使用executer
Example #12
0
#设置暴跌止损因子
sell_factor3 = {'pre_atr_n':1.0, 'class':AbuFactorPreAtrNStop}

#设置保护止盈因子组成dict
sell_factor4 = {'close_atr_n':1.5,'class': AbuFactorCloseAtrNStop}


sell_factors = [sell_factor1, sell_factor2, sell_factor3,sell_factor4]

benchmark = AbuBenchmark()

choice_symbols = ['usTSLA', 'usNOAH', 'usSFUN', 'usBIDU', 'usAAPL', 'usGOOG', 'usWUBA', 'usVIPS']


capital = AbuCapital(1000000, benchmark)
kl_pd_manager = AbuKLManager(benchmark,capital)


#orders_pd, action_pd, _ = ABuTradeProxy.trade_summary(abu_worker.orders, kl_pd, draw=True)
#orders_pd, action_pd, all_fit_symbols_cnt = ABuPickTimeExecute.do_symbols_with_same_factors(choice_symbols, benchmark, buy_factors, sell_factors, capital, show=False)

orders_pd, action_pd, _ = ABuPickTimeExecute.do_symbols_with_same_factors(['usAAPL'],
                                                                            benchmark,
                                                                            buy_factors,
                                                                            sell_factors,
                                                                            capital, show=True)

orders_pd[:10].filter(['symbol', 'buy_price', 'buy_cnt', 'buy_factor', 'buy_pos',
                       'sell_date', 'sell_type_extra', 'sell_type', 'profit'])

print(action_pd[:10])
Example #13
0
   stock_pickers = [{
       'threshold_ang_min': 0.0,
       'threshold_ang_max': 10.0,
       'reversed': False,
       'class': AbuPickRegressAngMinMax
   }, {
       'threshold_price_min': 50.0,
       'threshold_price_max': 100.0,
       'reserved': False,
       'class': AbuPickStockPriceMinMax
   }]
   symbols = ABuSymbol.search_to_symbol_dict('黄金')
   benchmark = AbuBenchmark()
   capital = AbuCapital(1000000, benchmark)
   # assign money
   kl_pd_manager = AbuKLManager(benchmark, capital)
   '''
 # tedious way
 from abupy import AbuPickStockWorker;
 stock_pick = AbuPickStockWorker(capital, benchmark, kl_pd_manager, choice_symbols = list(symbols.keys()), stock_pickers = stock_pickers);
 stock_pick.fit();
 print('candidates:', list(symbols.keys()));
 print('picked:', stock_pick.choice_symbols);
 '''
   # simple way
   from abupy import ABuPickStockExecute
   from abupy import ABuRegUtil
   picked_stocks = ABuPickStockExecute.do_pick_stock_work(
       list(symbols.keys()), benchmark, capital, stock_pickers)
   print('candidates:', list(symbols.keys()))
   for stock in picked_stocks: