def sample_821_1(): """ 8.2.1_1 选股使用示例 :return: """ # 选股条件threshold_ang_min=0.0, 即要求股票走势为向上上升趋势 stock_pickers = [{'class': AbuPickRegressAngMinMax, 'threshold_ang_min': 0.0, 'reversed': False}] # 从这几个股票里进行选股,只是为了演示方便 # 一般的选股都会是数量比较多的情况比如全市场股票 choice_symbols = ['usNOAH', 'usSFUN', 'usBIDU', 'usAAPL', 'usGOOG', 'usTSLA', 'usWUBA', 'usVIPS'] benchmark = AbuBenchmark() capital = AbuCapital(1000000, benchmark) kl_pd_manager = AbuKLManager(benchmark, capital) stock_pick = AbuPickStockWorker(capital, benchmark, kl_pd_manager, choice_symbols=choice_symbols, stock_pickers=stock_pickers) stock_pick.fit() # 打印最后的选股结果 print('stock_pick.choice_symbols:', stock_pick.choice_symbols) # 从kl_pd_manager缓存中获取选股走势数据,注意get_pick_stock_kl_pd为选股数据,get_pick_time_kl_pd为择时 kl_pd_noah = kl_pd_manager.get_pick_stock_kl_pd('usNOAH') # 绘制并计算角度 deg = ABuRegUtil.calc_regress_deg(kl_pd_noah.close) print('noah 选股周期内角度={}'.format(round(deg, 3)))
def sample_b3_4(): """ 【示例4】abu量化系统选股结合相关性,编写相关性选股策略 AbuPickSimilarNTop源代码请自行阅读,只简单示例使用。 :return: """ from abupy import AbuPickSimilarNTop from abupy import AbuPickStockWorker from abupy import AbuBenchmark, AbuCapital, AbuKLManager benchmark = AbuBenchmark() # 选股因子AbuPickSimilarNTop, 寻找与usTSLA相关性不低于0.95的股票 # 这里内部使用以整个市场作为观察者方式计算,即取值范围0-1 stock_pickers = [{ 'class': AbuPickSimilarNTop, 'similar_stock': 'usTSLA', 'threshold_similar_min': 0.95 }] # 从这几个股票里进行选股,只是为了演示方便,一般的选股都会是数量比较多的情况比如全市场股票 choice_symbols = [ 'usNOAH', 'usSFUN', 'usBIDU', 'usAAPL', 'usGOOG', 'usTSLA', 'usWUBA', 'usVIPS' ] capital = AbuCapital(1000000, benchmark) kl_pd_manager = AbuKLManager(benchmark, capital) stock_pick = AbuPickStockWorker(capital, benchmark, kl_pd_manager, choice_symbols=choice_symbols, stock_pickers=stock_pickers) stock_pick.fit() print('stock_pick.choice_symbols:\n', stock_pick.choice_symbols) """ 通过选股因子first_choice属性执行批量优先选股操作,具体阅读源代码 """ # 选股因子AbuPickSimilarNTop, 寻找与usTSLA相关性不低于0.95的股票 # 通过设置'first_choice':True,进行优先批量操作,默认从对应市场选股 stock_pickers = [{ 'class': AbuPickSimilarNTop, 'first_choice': True, 'similar_stock': 'usTSLA', 'threshold_similar_min': 0.95 }] benchmark = AbuBenchmark() capital = AbuCapital(1000000, benchmark) kl_pd_manager = AbuKLManager(benchmark, capital) stock_pick = AbuPickStockWorker(capital, benchmark, kl_pd_manager, choice_symbols=None, stock_pickers=stock_pickers) stock_pick.fit() print('stock_pick.choice_symbols:\n', stock_pick.choice_symbols)
def sample_b3_4(): """ 【示例4】abu量化系统选股结合相关性,编写相关性选股策略 AbuPickSimilarNTop源代码请自行阅读,只简单示例使用。 :return: """ from abupy import AbuPickSimilarNTop from abupy import AbuPickStockWorker from abupy import AbuBenchmark, AbuCapital, AbuKLManager benchmark = AbuBenchmark() # 选股因子AbuPickSimilarNTop, 寻找与usTSLA相关性不低于0.95的股票 # 这里内部使用以整个市场作为观察者方式计算,即取值范围0-1 stock_pickers = [{'class': AbuPickSimilarNTop, 'similar_stock': 'usTSLA', 'threshold_similar_min': 0.95}] # 从这几个股票里进行选股,只是为了演示方便,一般的选股都会是数量比较多的情况比如全市场股票 choice_symbols = ['usNOAH', 'usSFUN', 'usBIDU', 'usAAPL', 'usGOOG', 'usTSLA', 'usWUBA', 'usVIPS'] capital = AbuCapital(1000000, benchmark) kl_pd_manager = AbuKLManager(benchmark, capital) stock_pick = AbuPickStockWorker(capital, benchmark, kl_pd_manager, choice_symbols=choice_symbols, stock_pickers=stock_pickers) stock_pick.fit() print('stock_pick.choice_symbols:\n', stock_pick.choice_symbols) """ 通过选股因子first_choice属性执行批量优先选股操作,具体阅读源代码 """ # 选股因子AbuPickSimilarNTop, 寻找与usTSLA相关性不低于0.95的股票 # 通过设置'first_choice':True,进行优先批量操作,默认从对应市场选股 stock_pickers = [{'class': AbuPickSimilarNTop, 'first_choice': True, 'similar_stock': 'usTSLA', 'threshold_similar_min': 0.95}] benchmark = AbuBenchmark() capital = AbuCapital(1000000, benchmark) kl_pd_manager = AbuKLManager(benchmark, capital) stock_pick = AbuPickStockWorker(capital, benchmark, kl_pd_manager, choice_symbols=None, stock_pickers=stock_pickers) stock_pick.fit() print('stock_pick.choice_symbols:\n', stock_pick.choice_symbols)
'received': False }] # 一般而言,我们是遍历整个股市来选股,这里我们就选择以下几个股票来做演示 choice_symbols = [ 'usNOAH', 'usSFUN', 'usBIDU', 'usAAPL', 'usGOOG', 'usTSLA', 'usWUBA', 'usVIPS' ] # 开始执行 benchmark = AbuBenchmark() capital = AbuCapital(1000000, benchmark) kl_pd_manager = AbuKLManager(benchmark, capital) stock_pick = AbuPickStockWorker(capital, benchmark, kl_pd_manager, choice_symbols=choice_symbols, stock_pickers=stock_pickers) stock_pick.fit() print(stock_pick.choice_symbols) # 绘图 kl_pd_SFUN = kl_pd_manager.get_pick_stock_kl_pd('usNOAH') deg = ABuRegUtil.calc_regress_deg(kl_pd_SFUN.close) print(deg) # 上面使用worker的操作太麻烦,下面可以直接使用executer stock_pickers = [{ 'class': AbuPickRegressAngMinMax, 'threshold_ang_min': 0.0,