Example #1
0
def main(use_cython=True):
    # (very) simple crane model
    beta = 0.001
    k = 0.9
    a_max = 10
    dt_max = 2.0

    # states
    p1 = SX.sym('p1')
    v1 = SX.sym('v1')
    p2 = SX.sym('p2')
    v2 = SX.sym('v2')

    x = vertcat(p1, v1, p2, v2)

    # controls
    a = SX.sym('a')
    dt = SX.sym('dt')

    u = vertcat(a, dt)

    f_expl = dt * vertcat(v1, a, v2, -beta * v2 - k * (p2 - p1))

    model = AcadosModel()

    model.f_expl_expr = f_expl
    model.x = x
    model.u = u
    model.name = 'crane_time_opt'

    # create ocp object to formulate the OCP

    x0 = np.array([2.0, 0.0, 2.0, 0.0])
    xf = np.array([0.0, 0.0, 0.0, 0.0])

    ocp = AcadosOcp()
    ocp.model = model

    # N - maximum number of bangs
    N = 7
    Tf = N
    nx = model.x.size()[0]
    nu = model.u.size()[0]

    # set dimensions
    ocp.dims.N = N

    # set cost
    ocp.cost.cost_type = 'EXTERNAL'
    ocp.cost.cost_type_e = 'EXTERNAL'

    ocp.model.cost_expr_ext_cost = dt
    ocp.model.cost_expr_ext_cost_e = 0

    ocp.constraints.lbu = np.array([-a_max, 0.0])
    ocp.constraints.ubu = np.array([+a_max, dt_max])
    ocp.constraints.idxbu = np.array([0, 1])

    ocp.constraints.x0 = x0
    ocp.constraints.lbx_e = xf
    ocp.constraints.ubx_e = xf
    ocp.constraints.idxbx_e = np.array([0, 1, 2, 3])

    # set prediction horizon
    ocp.solver_options.tf = Tf

    # set options
    ocp.solver_options.qp_solver = 'FULL_CONDENSING_QPOASES'  #'PARTIAL_CONDENSING_HPIPM' # FULL_CONDENSING_QPOASES
    ocp.solver_options.integrator_type = 'ERK'
    ocp.solver_options.print_level = 3
    ocp.solver_options.nlp_solver_type = 'SQP'  # SQP_RTI, SQP
    ocp.solver_options.globalization = 'MERIT_BACKTRACKING'
    ocp.solver_options.nlp_solver_max_iter = 5000
    ocp.solver_options.nlp_solver_tol_stat = 1e-6
    ocp.solver_options.levenberg_marquardt = 0.1
    ocp.solver_options.sim_method_num_steps = 15
    ocp.solver_options.qp_solver_iter_max = 100
    ocp.code_export_directory = 'c_generated_code'
    ocp.solver_options.hessian_approx = 'EXACT'
    ocp.solver_options.exact_hess_constr = 0
    ocp.solver_options.exact_hess_dyn = 0

    if use_cython:
        AcadosOcpSolver.generate(ocp, json_file='acados_ocp.json')
        AcadosOcpSolver.build(ocp.code_export_directory, with_cython=True)
        ocp_solver = AcadosOcpSolver.create_cython_solver('acados_ocp.json')
    else:  # ctypes
        ## Note: skip generate and build assuming this is done before (in cython run)
        ocp_solver = AcadosOcpSolver(ocp,
                                     json_file='acados_ocp.json',
                                     build=False,
                                     generate=False)

    ocp_solver.reset()

    for i, tau in enumerate(np.linspace(0, 1, N)):
        ocp_solver.set(i, 'x', (1 - tau) * x0 + tau * xf)
        ocp_solver.set(i, 'u', np.array([0.1, 0.5]))

    simX = np.zeros((N + 1, nx))
    simU = np.zeros((N, nu))

    status = ocp_solver.solve()

    if status != 0:
        ocp_solver.print_statistics()
        raise Exception(f'acados returned status {status}.')

    # get solution
    for i in range(N):
        simX[i, :] = ocp_solver.get(i, "x")
        simU[i, :] = ocp_solver.get(i, "u")
    simX[N, :] = ocp_solver.get(N, "x")

    dts = simU[:, 1]

    print(
        "acados solved OCP successfully, creating integrator to simulate the solution"
    )

    # simulate on finer grid
    sim = AcadosSim()

    # set model
    sim.model = model

    # set options
    sim.solver_options.integrator_type = 'ERK'
    sim.solver_options.num_stages = 4
    sim.solver_options.num_steps = 3
    sim.solver_options.T = 1.0  # dummy value

    dt_approx = 0.0005

    dts_fine = np.zeros((N, ))
    Ns_fine = np.zeros((N, ), dtype='int16')

    # compute number of simulation steps for bang interval + dt_fine
    for i in range(N):
        N_approx = max(int(dts[i] / dt_approx), 1)
        dts_fine[i] = dts[i] / N_approx
        Ns_fine[i] = int(round(dts[i] / dts_fine[i]))

    N_fine = int(np.sum(Ns_fine))

    simU_fine = np.zeros((N_fine, nu))
    ts_fine = np.zeros((N_fine + 1, ))
    simX_fine = np.zeros((N_fine + 1, nx))
    simX_fine[0, :] = x0

    acados_integrator = AcadosSimSolver(sim)

    k = 0
    for i in range(N):
        u = simU[i, 0]
        acados_integrator.set("u", np.hstack((u, np.ones(1, ))))

        # set simulation time
        acados_integrator.set("T", dts_fine[i])

        for j in range(Ns_fine[i]):
            acados_integrator.set("x", simX_fine[k, :])
            status = acados_integrator.solve()
            if status != 0:
                raise Exception(f'acados returned status {status}.')

            simX_fine[k + 1, :] = acados_integrator.get("x")
            simU_fine[k, :] = u
            ts_fine[k + 1] = ts_fine[k] + dts_fine[i]

            k += 1

    # visualize
    if os.environ.get('ACADOS_ON_TRAVIS'):
        plt.figure()

        state_labels = ['p1', 'v1', 'p2', 'v2']

        for i, l in enumerate(state_labels):
            plt.subplot(5, 1, i + 1)

            plt.plot(ts_fine, simX_fine[:, i], label='time optimal solution')
            plt.grid(True)
            plt.ylabel(l)
            if i == 0:
                plt.legend(loc=1)

        plt.subplot(5, 1, 5)
        plt.step(ts_fine,
                 np.hstack((simU_fine[:, 0], simU_fine[-1, 0])),
                 '-',
                 where='post')
        plt.grid(True)
        plt.ylabel('a')
        plt.xlabel('t')

        plt.show()
Example #2
0
def main(cost_type='NONLINEAR_LS', hessian_approximation='EXACT', ext_cost_use_num_hess=0,
         integrator_type='ERK'):
    print(f"using: cost_type {cost_type}, integrator_type {integrator_type}")
    # create ocp object to formulate the OCP
    ocp = AcadosOcp()

    # set model
    model = export_pendulum_ode_model()
    ocp.model = model

    Tf = 1.0
    nx = model.x.size()[0]
    nu = model.u.size()[0]
    ny = nx + nu
    ny_e = nx
    N = 20

    ocp.dims.N = N

    # set cost
    Q = 2*np.diag([1e3, 1e3, 1e-2, 1e-2])
    R = 2*np.diag([1e-2])

    x = ocp.model.x
    u = ocp.model.u

    cost_W = scipy.linalg.block_diag(Q, R)

    if cost_type == 'LS':
        ocp.cost.cost_type = 'LINEAR_LS'
        ocp.cost.cost_type_e = 'LINEAR_LS'

        ocp.cost.Vx = np.zeros((ny, nx))
        ocp.cost.Vx[:nx,:nx] = np.eye(nx)

        Vu = np.zeros((ny, nu))
        Vu[4,0] = 1.0
        ocp.cost.Vu = Vu

        ocp.cost.Vx_e = np.eye(nx)

    elif cost_type == 'NONLINEAR_LS':
        ocp.cost.cost_type = 'NONLINEAR_LS'
        ocp.cost.cost_type_e = 'NONLINEAR_LS'

        ocp.model.cost_y_expr = vertcat(x, u)
        ocp.model.cost_y_expr_e = x

    elif cost_type == 'EXTERNAL':
        ocp.cost.cost_type = 'EXTERNAL'
        ocp.cost.cost_type_e = 'EXTERNAL'

        ocp.model.cost_expr_ext_cost = vertcat(x, u).T @ cost_W @ vertcat(x, u)
        ocp.model.cost_expr_ext_cost_e = x.T @ Q @ x

    else:
        raise Exception('Unknown cost_type. Possible values are \'LS\' and \'NONLINEAR_LS\'.')

    if cost_type in ['LS', 'NONLINEAR_LS']:
        ocp.cost.yref = np.zeros((ny, ))
        ocp.cost.yref_e = np.zeros((ny_e, ))
        ocp.cost.W_e = Q
        ocp.cost.W = cost_W

    # set constraints
    Fmax = 80
    ocp.constraints.constr_type = 'BGH'
    ocp.constraints.lbu = np.array([-Fmax])
    ocp.constraints.ubu = np.array([+Fmax])
    x0 = np.array([0.0, np.pi, 0.0, 0.0])
    ocp.constraints.x0 = x0
    ocp.constraints.idxbu = np.array([0])

    ocp.solver_options.qp_solver = 'PARTIAL_CONDENSING_HPIPM' # FULL_CONDENSING_QPOASES
    ocp.solver_options.hessian_approx = hessian_approximation
    ocp.solver_options.regularize_method = 'CONVEXIFY'
    ocp.solver_options.integrator_type = integrator_type
    if ocp.solver_options.integrator_type == 'GNSF':
        import json
        with open('../getting_started/common/' + model.name + '_gnsf_functions.json', 'r') as f:
            gnsf_dict = json.load(f)
        ocp.gnsf_model = gnsf_dict

    ocp.solver_options.qp_solver_cond_N = 5

    # set prediction horizon
    ocp.solver_options.tf = Tf
    ocp.solver_options.nlp_solver_type = 'SQP' # SQP_RTI
    ocp.solver_options.ext_cost_num_hess = ext_cost_use_num_hess

    ocp_solver = AcadosOcpSolver(ocp, json_file = 'acados_ocp.json')

    # set NaNs as input to test reset() -> NOT RECOMMENDED!!!
    # ocp_solver.options_set('print_level', 2)
    for i in range(N):
        ocp_solver.set(i, 'x', np.NaN * np.ones((nx,)))
        ocp_solver.set(i, 'u', np.NaN * np.ones((nu,)))
    status = ocp_solver.solve()
    ocp_solver.print_statistics() # encapsulates: stat = ocp_solver.get_stats("statistics")
    if status == 0:
        raise Exception(f'acados returned status {status}, although NaNs were given.')
    else:
        print(f'acados returned status {status}, which is expected, since NaNs were given.')

    # RESET
    ocp_solver.reset()
    for i in range(N):
        ocp_solver.set(i, 'x', x0)

    if cost_type == 'EXTERNAL':
        # NOTE: hessian is wrt [u,x]
        if ext_cost_use_num_hess:
            for i in range(N):
                ocp_solver.cost_set(i, "ext_cost_num_hess", np.diag([0.04, 4000, 4000, 0.04, 0.04, ]))
            ocp_solver.cost_set(N, "ext_cost_num_hess", np.diag([4000, 4000, 0.04, 0.04, ]))

    simX = np.ndarray((N+1, nx))
    simU = np.ndarray((N, nu))

    status = ocp_solver.solve()

    ocp_solver.print_statistics()
    if status != 0:
        raise Exception(f'acados returned status {status} for cost_type {cost_type}\n'
                        f'integrator_type = {integrator_type}.')

    # get solution
    for i in range(N):
        simX[i,:] = ocp_solver.get(i, "x")
        simU[i,:] = ocp_solver.get(i, "u")
    simX[N,:] = ocp_solver.get(N, "x")