def main(use_cython=True): # (very) simple crane model beta = 0.001 k = 0.9 a_max = 10 dt_max = 2.0 # states p1 = SX.sym('p1') v1 = SX.sym('v1') p2 = SX.sym('p2') v2 = SX.sym('v2') x = vertcat(p1, v1, p2, v2) # controls a = SX.sym('a') dt = SX.sym('dt') u = vertcat(a, dt) f_expl = dt * vertcat(v1, a, v2, -beta * v2 - k * (p2 - p1)) model = AcadosModel() model.f_expl_expr = f_expl model.x = x model.u = u model.name = 'crane_time_opt' # create ocp object to formulate the OCP x0 = np.array([2.0, 0.0, 2.0, 0.0]) xf = np.array([0.0, 0.0, 0.0, 0.0]) ocp = AcadosOcp() ocp.model = model # N - maximum number of bangs N = 7 Tf = N nx = model.x.size()[0] nu = model.u.size()[0] # set dimensions ocp.dims.N = N # set cost ocp.cost.cost_type = 'EXTERNAL' ocp.cost.cost_type_e = 'EXTERNAL' ocp.model.cost_expr_ext_cost = dt ocp.model.cost_expr_ext_cost_e = 0 ocp.constraints.lbu = np.array([-a_max, 0.0]) ocp.constraints.ubu = np.array([+a_max, dt_max]) ocp.constraints.idxbu = np.array([0, 1]) ocp.constraints.x0 = x0 ocp.constraints.lbx_e = xf ocp.constraints.ubx_e = xf ocp.constraints.idxbx_e = np.array([0, 1, 2, 3]) # set prediction horizon ocp.solver_options.tf = Tf # set options ocp.solver_options.qp_solver = 'FULL_CONDENSING_QPOASES' #'PARTIAL_CONDENSING_HPIPM' # FULL_CONDENSING_QPOASES ocp.solver_options.integrator_type = 'ERK' ocp.solver_options.print_level = 3 ocp.solver_options.nlp_solver_type = 'SQP' # SQP_RTI, SQP ocp.solver_options.globalization = 'MERIT_BACKTRACKING' ocp.solver_options.nlp_solver_max_iter = 5000 ocp.solver_options.nlp_solver_tol_stat = 1e-6 ocp.solver_options.levenberg_marquardt = 0.1 ocp.solver_options.sim_method_num_steps = 15 ocp.solver_options.qp_solver_iter_max = 100 ocp.code_export_directory = 'c_generated_code' ocp.solver_options.hessian_approx = 'EXACT' ocp.solver_options.exact_hess_constr = 0 ocp.solver_options.exact_hess_dyn = 0 if use_cython: AcadosOcpSolver.generate(ocp, json_file='acados_ocp.json') AcadosOcpSolver.build(ocp.code_export_directory, with_cython=True) ocp_solver = AcadosOcpSolver.create_cython_solver('acados_ocp.json') else: # ctypes ## Note: skip generate and build assuming this is done before (in cython run) ocp_solver = AcadosOcpSolver(ocp, json_file='acados_ocp.json', build=False, generate=False) ocp_solver.reset() for i, tau in enumerate(np.linspace(0, 1, N)): ocp_solver.set(i, 'x', (1 - tau) * x0 + tau * xf) ocp_solver.set(i, 'u', np.array([0.1, 0.5])) simX = np.zeros((N + 1, nx)) simU = np.zeros((N, nu)) status = ocp_solver.solve() if status != 0: ocp_solver.print_statistics() raise Exception(f'acados returned status {status}.') # get solution for i in range(N): simX[i, :] = ocp_solver.get(i, "x") simU[i, :] = ocp_solver.get(i, "u") simX[N, :] = ocp_solver.get(N, "x") dts = simU[:, 1] print( "acados solved OCP successfully, creating integrator to simulate the solution" ) # simulate on finer grid sim = AcadosSim() # set model sim.model = model # set options sim.solver_options.integrator_type = 'ERK' sim.solver_options.num_stages = 4 sim.solver_options.num_steps = 3 sim.solver_options.T = 1.0 # dummy value dt_approx = 0.0005 dts_fine = np.zeros((N, )) Ns_fine = np.zeros((N, ), dtype='int16') # compute number of simulation steps for bang interval + dt_fine for i in range(N): N_approx = max(int(dts[i] / dt_approx), 1) dts_fine[i] = dts[i] / N_approx Ns_fine[i] = int(round(dts[i] / dts_fine[i])) N_fine = int(np.sum(Ns_fine)) simU_fine = np.zeros((N_fine, nu)) ts_fine = np.zeros((N_fine + 1, )) simX_fine = np.zeros((N_fine + 1, nx)) simX_fine[0, :] = x0 acados_integrator = AcadosSimSolver(sim) k = 0 for i in range(N): u = simU[i, 0] acados_integrator.set("u", np.hstack((u, np.ones(1, )))) # set simulation time acados_integrator.set("T", dts_fine[i]) for j in range(Ns_fine[i]): acados_integrator.set("x", simX_fine[k, :]) status = acados_integrator.solve() if status != 0: raise Exception(f'acados returned status {status}.') simX_fine[k + 1, :] = acados_integrator.get("x") simU_fine[k, :] = u ts_fine[k + 1] = ts_fine[k] + dts_fine[i] k += 1 # visualize if os.environ.get('ACADOS_ON_TRAVIS'): plt.figure() state_labels = ['p1', 'v1', 'p2', 'v2'] for i, l in enumerate(state_labels): plt.subplot(5, 1, i + 1) plt.plot(ts_fine, simX_fine[:, i], label='time optimal solution') plt.grid(True) plt.ylabel(l) if i == 0: plt.legend(loc=1) plt.subplot(5, 1, 5) plt.step(ts_fine, np.hstack((simU_fine[:, 0], simU_fine[-1, 0])), '-', where='post') plt.grid(True) plt.ylabel('a') plt.xlabel('t') plt.show()
def main(cost_type='NONLINEAR_LS', hessian_approximation='EXACT', ext_cost_use_num_hess=0, integrator_type='ERK'): print(f"using: cost_type {cost_type}, integrator_type {integrator_type}") # create ocp object to formulate the OCP ocp = AcadosOcp() # set model model = export_pendulum_ode_model() ocp.model = model Tf = 1.0 nx = model.x.size()[0] nu = model.u.size()[0] ny = nx + nu ny_e = nx N = 20 ocp.dims.N = N # set cost Q = 2*np.diag([1e3, 1e3, 1e-2, 1e-2]) R = 2*np.diag([1e-2]) x = ocp.model.x u = ocp.model.u cost_W = scipy.linalg.block_diag(Q, R) if cost_type == 'LS': ocp.cost.cost_type = 'LINEAR_LS' ocp.cost.cost_type_e = 'LINEAR_LS' ocp.cost.Vx = np.zeros((ny, nx)) ocp.cost.Vx[:nx,:nx] = np.eye(nx) Vu = np.zeros((ny, nu)) Vu[4,0] = 1.0 ocp.cost.Vu = Vu ocp.cost.Vx_e = np.eye(nx) elif cost_type == 'NONLINEAR_LS': ocp.cost.cost_type = 'NONLINEAR_LS' ocp.cost.cost_type_e = 'NONLINEAR_LS' ocp.model.cost_y_expr = vertcat(x, u) ocp.model.cost_y_expr_e = x elif cost_type == 'EXTERNAL': ocp.cost.cost_type = 'EXTERNAL' ocp.cost.cost_type_e = 'EXTERNAL' ocp.model.cost_expr_ext_cost = vertcat(x, u).T @ cost_W @ vertcat(x, u) ocp.model.cost_expr_ext_cost_e = x.T @ Q @ x else: raise Exception('Unknown cost_type. Possible values are \'LS\' and \'NONLINEAR_LS\'.') if cost_type in ['LS', 'NONLINEAR_LS']: ocp.cost.yref = np.zeros((ny, )) ocp.cost.yref_e = np.zeros((ny_e, )) ocp.cost.W_e = Q ocp.cost.W = cost_W # set constraints Fmax = 80 ocp.constraints.constr_type = 'BGH' ocp.constraints.lbu = np.array([-Fmax]) ocp.constraints.ubu = np.array([+Fmax]) x0 = np.array([0.0, np.pi, 0.0, 0.0]) ocp.constraints.x0 = x0 ocp.constraints.idxbu = np.array([0]) ocp.solver_options.qp_solver = 'PARTIAL_CONDENSING_HPIPM' # FULL_CONDENSING_QPOASES ocp.solver_options.hessian_approx = hessian_approximation ocp.solver_options.regularize_method = 'CONVEXIFY' ocp.solver_options.integrator_type = integrator_type if ocp.solver_options.integrator_type == 'GNSF': import json with open('../getting_started/common/' + model.name + '_gnsf_functions.json', 'r') as f: gnsf_dict = json.load(f) ocp.gnsf_model = gnsf_dict ocp.solver_options.qp_solver_cond_N = 5 # set prediction horizon ocp.solver_options.tf = Tf ocp.solver_options.nlp_solver_type = 'SQP' # SQP_RTI ocp.solver_options.ext_cost_num_hess = ext_cost_use_num_hess ocp_solver = AcadosOcpSolver(ocp, json_file = 'acados_ocp.json') # set NaNs as input to test reset() -> NOT RECOMMENDED!!! # ocp_solver.options_set('print_level', 2) for i in range(N): ocp_solver.set(i, 'x', np.NaN * np.ones((nx,))) ocp_solver.set(i, 'u', np.NaN * np.ones((nu,))) status = ocp_solver.solve() ocp_solver.print_statistics() # encapsulates: stat = ocp_solver.get_stats("statistics") if status == 0: raise Exception(f'acados returned status {status}, although NaNs were given.') else: print(f'acados returned status {status}, which is expected, since NaNs were given.') # RESET ocp_solver.reset() for i in range(N): ocp_solver.set(i, 'x', x0) if cost_type == 'EXTERNAL': # NOTE: hessian is wrt [u,x] if ext_cost_use_num_hess: for i in range(N): ocp_solver.cost_set(i, "ext_cost_num_hess", np.diag([0.04, 4000, 4000, 0.04, 0.04, ])) ocp_solver.cost_set(N, "ext_cost_num_hess", np.diag([4000, 4000, 0.04, 0.04, ])) simX = np.ndarray((N+1, nx)) simU = np.ndarray((N, nu)) status = ocp_solver.solve() ocp_solver.print_statistics() if status != 0: raise Exception(f'acados returned status {status} for cost_type {cost_type}\n' f'integrator_type = {integrator_type}.') # get solution for i in range(N): simX[i,:] = ocp_solver.get(i, "x") simU[i,:] = ocp_solver.get(i, "u") simX[N,:] = ocp_solver.get(N, "x")