j, "y_ref",
                nmp.array([
                    -1, 1, 0, 0.770, -0.421, 0.421, 0.230, 0, 0, 0, uSS, uSS,
                    uSS, uSS
                ]))

    status = acados_ocp_solver.solve()
    if status != 0:
        raise Exception(
            'acados acados_ocp_solver returned status {}. Exiting.'.format(
                status))

    simU[i, :] = acados_ocp_solver.get(0, "u")
    acados_integrator.set("x", x0)
    acados_integrator.set("u", simU[i, :])
    status = acados_integrator.solve()
    if status != 0:
        raise Exception(
            'acados integrator returned status {}. Exiting.'.format(status))

    # update state
    x0 = acados_integrator.get("x")
    simX[i + 1, :] = x0

qtest = YPRtoQuat(nmp.array([nmp.pi / 4, nmp.pi / 4, 0]))
print("q\n", qtest)
R = QuattoR(qtest)
print("RMat:\n", R)
# plot results
plot_quad(dt, uSS, uDel, simU, simX)
Example #2
0
for i in range(N):
    # set initial state
    u0 = simU[i, :]
    p = nmp.array([zeta, ts, Kp])

    # Pick which control input actuates the body, allows for varying time delay.
    p_dt = nmp.array([zeta, ts, Kp, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
    acados_integrator_ct.set("p", p)
    acados_integrator_ct.set("x", x0)
    acados_integrator_ct.set("u", u0)

    acados_integrator_dt.set("p", p_dt)
    acados_integrator_dt.set("x", x0disc)
    acados_integrator_dt.set("u", u0)

    status = acados_integrator_dt.solve()
    if status != 0:
        raise Exception('acados returned status {}. Exiting.'.format(status))
    # get solution
    x0disc = acados_integrator_dt.get("x")

    status = acados_integrator_ct.solve()
    if status != 0:
        raise Exception('acados returned status {}. Exiting.'.format(status))
    # get solution
    x0 = acados_integrator_ct.get("x")

    simXdisc[i + 1, :] = x0disc
    simX[i + 1, :] = x0

    simY[i + 1, :] = x0[0] + nmp.transpose(
Example #3
0
def run_closed_loop_experiment(FORMULATION):
    # create ocp object to formulate the OCP
    ocp = AcadosOcp()

    # set model
    model = export_pendulum_ode_model()
    ocp.model = model

    Tf = 1.0
    nx = model.x.size()[0]
    nu = model.u.size()[0]
    ny = nx + nu
    ny_e = nx
    N = 20

    # set dimensions
    # NOTE: all dimensions but N ar detected
    ocp.dims.N = N

    # set cost module
    ocp.cost.cost_type = 'LINEAR_LS'
    ocp.cost.cost_type_e = 'LINEAR_LS'

    Q = 2 * np.diag([1e3, 1e3, 1e-2, 1e-2])
    R = 2 * np.diag([1e-2])

    ocp.cost.W = scipy.linalg.block_diag(Q, R)

    ocp.cost.Vx = np.zeros((ny, nx))
    ocp.cost.Vx[:nx, :nx] = np.eye(nx)

    Vu = np.zeros((ny, nu))
    Vu[4, 0] = 1.0
    ocp.cost.Vu = Vu

    ocp.cost.Vx_e = np.eye(nx)
    ocp.cost.W_e = Q

    ocp.cost.yref = np.zeros((ny, ))
    ocp.cost.yref_e = np.zeros((ny_e, ))

    ocp.cost.zl = 2000 * np.ones((1, ))
    ocp.cost.Zl = 1 * np.ones((1, ))
    ocp.cost.zu = 2000 * np.ones((1, ))
    ocp.cost.Zu = 1 * np.ones((1, ))

    # set constraints
    Fmax = 80
    vmax = 5

    x0 = np.array([0.0, np.pi, 0.0, 0.0])
    ocp.constraints.x0 = x0

    # bound on u
    ocp.constraints.lbu = np.array([-Fmax])
    ocp.constraints.ubu = np.array([+Fmax])
    ocp.constraints.idxbu = np.array([0])
    if FORMULATION == 0:
        # soft bound on x
        ocp.constraints.lbx = np.array([-vmax])
        ocp.constraints.ubx = np.array([+vmax])
        ocp.constraints.idxbx = np.array([2])  # v is x[2]
        # indices of slacked constraints within bx
        ocp.constraints.idxsbx = np.array([0])

    elif FORMULATION == 1:
        # soft bound on x, using constraint h
        v1 = ocp.model.x[2]
        ocp.model.con_h_expr = v1

        ocp.constraints.lh = np.array([-vmax])
        ocp.constraints.uh = np.array([+vmax])
        # indices of slacked constraints within h
        ocp.constraints.idxsh = np.array([0])

    # set options
    ocp.solver_options.qp_solver = 'PARTIAL_CONDENSING_HPIPM'
    ocp.solver_options.hessian_approx = 'GAUSS_NEWTON'
    ocp.solver_options.integrator_type = 'ERK'
    ocp.solver_options.tf = Tf
    ocp.solver_options.nlp_solver_type = 'SQP'
    ocp.solver_options.tol = 1e-1 * tol

    json_filename = 'pendulum_soft_constraints.json'
    acados_ocp_solver = AcadosOcpSolver(ocp, json_file=json_filename)
    acados_integrator = AcadosSimSolver(ocp, json_file=json_filename)

    # closed loop
    Nsim = 20
    simX = np.ndarray((Nsim + 1, nx))
    simU = np.ndarray((Nsim, nu))
    xcurrent = x0

    for i in range(Nsim):
        simX[i, :] = xcurrent

        # solve ocp
        acados_ocp_solver.set(0, "lbx", xcurrent)
        acados_ocp_solver.set(0, "ubx", xcurrent)

        status = acados_ocp_solver.solve()
        if status != 0:
            raise Exception(
                'acados acados_ocp_solver returned status {}. Exiting.'.format(
                    status))

        simU[i, :] = acados_ocp_solver.get(0, "u")

        # simulate system
        acados_integrator.set("x", xcurrent)
        acados_integrator.set("u", simU[i, :])

        status = acados_integrator.solve()
        if status != 0:
            raise Exception(
                'acados integrator returned status {}. Exiting.'.format(
                    status))

        # update state
        xcurrent = acados_integrator.get("x")

    simX[Nsim, :] = xcurrent

    # get slack values at stage 1
    sl = acados_ocp_solver.get(1, "sl")
    su = acados_ocp_solver.get(1, "su")
    print("sl", sl, "su", su)

    # plot results
    # plot_pendulum(np.linspace(0, Tf, N+1), Fmax, simU, simX, latexify=False)

    # store results
    np.savetxt('test_results/simX_soft_formulation_' + str(FORMULATION), simX)
    np.savetxt('test_results/simU_soft_formulation_' + str(FORMULATION), simU)

    print("soft constraint example: ran formulation", FORMULATION,
          "successfully.")
Example #4
0
def main(use_cython=True):
    # (very) simple crane model
    beta = 0.001
    k = 0.9
    a_max = 10
    dt_max = 2.0

    # states
    p1 = SX.sym('p1')
    v1 = SX.sym('v1')
    p2 = SX.sym('p2')
    v2 = SX.sym('v2')

    x = vertcat(p1, v1, p2, v2)

    # controls
    a = SX.sym('a')
    dt = SX.sym('dt')

    u = vertcat(a, dt)

    f_expl = dt * vertcat(v1, a, v2, -beta * v2 - k * (p2 - p1))

    model = AcadosModel()

    model.f_expl_expr = f_expl
    model.x = x
    model.u = u
    model.name = 'crane_time_opt'

    # create ocp object to formulate the OCP

    x0 = np.array([2.0, 0.0, 2.0, 0.0])
    xf = np.array([0.0, 0.0, 0.0, 0.0])

    ocp = AcadosOcp()
    ocp.model = model

    # N - maximum number of bangs
    N = 7
    Tf = N
    nx = model.x.size()[0]
    nu = model.u.size()[0]

    # set dimensions
    ocp.dims.N = N

    # set cost
    ocp.cost.cost_type = 'EXTERNAL'
    ocp.cost.cost_type_e = 'EXTERNAL'

    ocp.model.cost_expr_ext_cost = dt
    ocp.model.cost_expr_ext_cost_e = 0

    ocp.constraints.lbu = np.array([-a_max, 0.0])
    ocp.constraints.ubu = np.array([+a_max, dt_max])
    ocp.constraints.idxbu = np.array([0, 1])

    ocp.constraints.x0 = x0
    ocp.constraints.lbx_e = xf
    ocp.constraints.ubx_e = xf
    ocp.constraints.idxbx_e = np.array([0, 1, 2, 3])

    # set prediction horizon
    ocp.solver_options.tf = Tf

    # set options
    ocp.solver_options.qp_solver = 'FULL_CONDENSING_QPOASES'  #'PARTIAL_CONDENSING_HPIPM' # FULL_CONDENSING_QPOASES
    ocp.solver_options.integrator_type = 'ERK'
    ocp.solver_options.print_level = 3
    ocp.solver_options.nlp_solver_type = 'SQP'  # SQP_RTI, SQP
    ocp.solver_options.globalization = 'MERIT_BACKTRACKING'
    ocp.solver_options.nlp_solver_max_iter = 5000
    ocp.solver_options.nlp_solver_tol_stat = 1e-6
    ocp.solver_options.levenberg_marquardt = 0.1
    ocp.solver_options.sim_method_num_steps = 15
    ocp.solver_options.qp_solver_iter_max = 100
    ocp.code_export_directory = 'c_generated_code'
    ocp.solver_options.hessian_approx = 'EXACT'
    ocp.solver_options.exact_hess_constr = 0
    ocp.solver_options.exact_hess_dyn = 0

    if use_cython:
        AcadosOcpSolver.generate(ocp, json_file='acados_ocp.json')
        AcadosOcpSolver.build(ocp.code_export_directory, with_cython=True)
        ocp_solver = AcadosOcpSolver.create_cython_solver('acados_ocp.json')
    else:  # ctypes
        ## Note: skip generate and build assuming this is done before (in cython run)
        ocp_solver = AcadosOcpSolver(ocp,
                                     json_file='acados_ocp.json',
                                     build=False,
                                     generate=False)

    ocp_solver.reset()

    for i, tau in enumerate(np.linspace(0, 1, N)):
        ocp_solver.set(i, 'x', (1 - tau) * x0 + tau * xf)
        ocp_solver.set(i, 'u', np.array([0.1, 0.5]))

    simX = np.zeros((N + 1, nx))
    simU = np.zeros((N, nu))

    status = ocp_solver.solve()

    if status != 0:
        ocp_solver.print_statistics()
        raise Exception(f'acados returned status {status}.')

    # get solution
    for i in range(N):
        simX[i, :] = ocp_solver.get(i, "x")
        simU[i, :] = ocp_solver.get(i, "u")
    simX[N, :] = ocp_solver.get(N, "x")

    dts = simU[:, 1]

    print(
        "acados solved OCP successfully, creating integrator to simulate the solution"
    )

    # simulate on finer grid
    sim = AcadosSim()

    # set model
    sim.model = model

    # set options
    sim.solver_options.integrator_type = 'ERK'
    sim.solver_options.num_stages = 4
    sim.solver_options.num_steps = 3
    sim.solver_options.T = 1.0  # dummy value

    dt_approx = 0.0005

    dts_fine = np.zeros((N, ))
    Ns_fine = np.zeros((N, ), dtype='int16')

    # compute number of simulation steps for bang interval + dt_fine
    for i in range(N):
        N_approx = max(int(dts[i] / dt_approx), 1)
        dts_fine[i] = dts[i] / N_approx
        Ns_fine[i] = int(round(dts[i] / dts_fine[i]))

    N_fine = int(np.sum(Ns_fine))

    simU_fine = np.zeros((N_fine, nu))
    ts_fine = np.zeros((N_fine + 1, ))
    simX_fine = np.zeros((N_fine + 1, nx))
    simX_fine[0, :] = x0

    acados_integrator = AcadosSimSolver(sim)

    k = 0
    for i in range(N):
        u = simU[i, 0]
        acados_integrator.set("u", np.hstack((u, np.ones(1, ))))

        # set simulation time
        acados_integrator.set("T", dts_fine[i])

        for j in range(Ns_fine[i]):
            acados_integrator.set("x", simX_fine[k, :])
            status = acados_integrator.solve()
            if status != 0:
                raise Exception(f'acados returned status {status}.')

            simX_fine[k + 1, :] = acados_integrator.get("x")
            simU_fine[k, :] = u
            ts_fine[k + 1] = ts_fine[k] + dts_fine[i]

            k += 1

    # visualize
    if os.environ.get('ACADOS_ON_TRAVIS'):
        plt.figure()

        state_labels = ['p1', 'v1', 'p2', 'v2']

        for i, l in enumerate(state_labels):
            plt.subplot(5, 1, i + 1)

            plt.plot(ts_fine, simX_fine[:, i], label='time optimal solution')
            plt.grid(True)
            plt.ylabel(l)
            if i == 0:
                plt.legend(loc=1)

        plt.subplot(5, 1, 5)
        plt.step(ts_fine,
                 np.hstack((simU_fine[:, 0], simU_fine[-1, 0])),
                 '-',
                 where='post')
        plt.grid(True)
        plt.ylabel('a')
        plt.xlabel('t')

        plt.show()