def __eval_data(self): if self.type == 'train': sampler = acs.AccousticSampler( 'D:/PYTHON_WORKSPACES/Kaggles/EarthquakePrediction/LANL_Earthquake/data/train_data_new' ) # sampler = acs.AccousticSampler('D:/PYTHON_WORKSPACES/Kaggles/EarthquakePrediction/LANL_Earthquake/data/test_data', data_type='test') sampler.fit() self.data_df = sampler.get() self.y_train = self.data_df['time_to_failure'] elif self.type == 'test': sampler = acs.AccousticSampler( 'D:/PYTHON_WORKSPACES/Kaggles/EarthquakePrediction/LANL_Earthquake/data/test_data', data_type='test') sampler.fit() self.data_df = sampler.get() self.y_seg = self.data_df['segment_id']
# Run Multi Layer Perceptron from sklearn.metrics import mean_absolute_error from sklearn.model_selection import train_test_split import accoustic_sampler as acs import data_formatter as dtFrm from model_holder import ModelHolder, load_model import numpy as np from sklearn.neural_network.multilayer_perceptron import MLPRegressor model_name = 'mlp_regression.model'; sampler = acs.AccousticSampler('D:/PYTHON_WORKSPACES/Kaggles/EarthquakePrediction/LANL_Earthquake/data/train_data_new') sampler.fit() data_df = sampler.get() formatter = dtFrm.LANLDataFormatter(data_df=data_df, data_type='train', doTransform=True, doScale=True, cols_to_keep=50) data_df = formatter.transform() most_dependent_columns = formatter.getMostImpCols() # data_df = data_df.drop(['acc_max','acc_min','chg_acc_max','chg_acc_min'],axis=1) # Splitting data into test_random_forest and train # train_set, test_set = train_test_split(data_df, test_size=0.2, random_state=np.random.randint(1, 1000)) # Separate output from inputs y_train = data_df['time_to_failure'] x_train_seg = data_df['segment_id'] x_train = data_df.drop(['time_to_failure', 'segment_id'], axis=1) y_train = np.around(y_train.values, decimals=2)