def run_training(continue_run): logging.info('EXPERIMENT NAME: %s' % exp_config.experiment_name) already_created_recursion = False print("ALready created recursion : " + str(already_created_recursion)) init_step = 0 # Load data base_data, recursion_data, recursion = acdc_data.load_and_maybe_process_scribbles( scribble_file=sys_config.project_root + exp_config.scribble_data, target_folder=log_dir, percent_full_sup=exp_config.percent_full_sup, scr_ratio=exp_config.length_ratio) #wrap everything from this point onwards in a try-except to catch keyboard interrupt so #can control h5py closing data try: loaded_previous_recursion = False start_epoch = 0 if continue_run: logging.info( '!!!!!!!!!!!!!!!!!!!!!!!!!!!! Continuing previous run !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!' ) try: try: init_checkpoint_path = utils.get_latest_model_checkpoint_path( log_dir, 'recursion_{}_model.ckpt'.format(recursion)) except: print("EXCEPTE GİRDİ") init_checkpoint_path = utils.get_latest_model_checkpoint_path( log_dir, 'recursion_{}_model.ckpt'.format(recursion - 1)) loaded_previous_recursion = True logging.info('Checkpoint path: %s' % init_checkpoint_path) init_step = int( init_checkpoint_path.split('/')[-1].split('-') [-1]) + 1 # plus 1 b/c otherwise starts with eval start_epoch = int(init_step / (len(base_data['images_train']) / 4)) logging.info('Latest step was: %d' % init_step) logging.info('Continuing with epoch: %d' % start_epoch) except: logging.warning( '!!! Did not find init checkpoint. Maybe first run failed. Disabling continue mode...' ) continue_run = False init_step = 0 start_epoch = 0 logging.info( '!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!' ) if loaded_previous_recursion: logging.info( "Data file exists for recursion {} " "but checkpoints only present up to recursion {}".format( recursion, recursion - 1)) logging.info("Likely means postprocessing was terminated") if not already_created_recursion: recursion_data = acdc_data.load_different_recursion( recursion_data, -1) recursion -= 1 else: start_epoch = 0 init_step = 0 # load images and validation data images_train = np.array(base_data['images_train']) scribbles_train = np.array(base_data['scribbles_train']) images_val = np.array(base_data['images_test']) labels_val = np.array(base_data['masks_test']) # if exp_config.use_data_fraction: # num_images = images_train.shape[0] # new_last_index = int(float(num_images)*exp_config.use_data_fraction) # # logging.warning('USING ONLY FRACTION OF DATA!') # logging.warning(' - Number of imgs orig: %d, Number of imgs new: %d' % (num_images, new_last_index)) # images_train = images_train[0:new_last_index,...] # labels_train = labels_train[0:new_last_index,...] logging.info('Data summary:') logging.info(' - Images:') logging.info(images_train.shape) logging.info(images_train.dtype) #logging.info(' - Labels:') #logging.info(labels_train.shape) #logging.info(labels_train.dtype) # Tell TensorFlow that the model will be built into the default Graph. config = tf.ConfigProto() config.gpu_options.allow_growth = True config.allow_soft_placement = True # with tf.Graph().as_default(): with tf.Session(config=config) as sess: # Generate placeholders for the images and labels. image_tensor_shape = [exp_config.batch_size] + list( exp_config.image_size) + [1] mask_tensor_shape = [exp_config.batch_size] + list( exp_config.image_size) images_placeholder = tf.placeholder(tf.float32, shape=image_tensor_shape, name='images') labels_placeholder = tf.placeholder(tf.uint8, shape=mask_tensor_shape, name='labels') learning_rate_placeholder = tf.placeholder(tf.float32, shape=[]) crf_learning_rate_placeholder = tf.placeholder(tf.float32, shape=[]) training_time_placeholder = tf.placeholder(tf.bool, shape=[]) tf.summary.scalar('learning_rate', learning_rate_placeholder) # Build a Graph that computes predictions from the inference model. logits = model.inference(images_placeholder, exp_config.model_handle, training=training_time_placeholder, nlabels=exp_config.nlabels) # Add to the Graph the Ops for loss calculation. [loss, _, weights_norm ] = model.loss(logits, labels_placeholder, nlabels=exp_config.nlabels, loss_type=exp_config.loss_type, weight_decay=exp_config.weight_decay ) # second output is unregularised loss tf.summary.scalar('loss', loss) tf.summary.scalar('weights_norm_term', weights_norm) crf_variables = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='crf_scope') print(str(crf_variables)) spatial_weight = [] for v in crf_variables: if v.name[10:17] == 'spatial': spatial_weight.append(v) print("FOUNDDDDDDD") # crf_weights = [] # crf_weights_name = [] # for v in tf.all_variables(): # # if v.name[0:4]=='bila': # print(str(v)) # crf_weights.append(v) # crf_weights_name.append(v.name) # elif v.name[0:4] =='spat': # print(str(v)) # crf_weights_name.append(v.name) # crf_weights.append(v) # elif v.name[0:4] =='comp': # print(str(v)) # crf_weights.append(v) # crf_weights_name.append(v.name) restore_var = [ v for v in tf.all_variables() if v.name not in crf_variables ] # Add to the Graph the Ops that calculate and apply gradients. global_step = tf.Variable(0, name='global_step', trainable=False) network_train_op = tf.train.AdamOptimizer( learning_rate=learning_rate_placeholder).minimize( loss, var_list=restore_var, colocate_gradients_with_ops=True, global_step=global_step) reg_loss = tf.nn.l2_loss(spatial_weight) crf_train_op = tf.train.AdamOptimizer( learning_rate=crf_learning_rate_placeholder).minimize( loss + 0.0001 * reg_loss, var_list=crf_variables, colocate_gradients_with_ops=True, global_step=global_step) # Add the Op to compare the logits to the labels during evaluation. # eval_loss = model.evaluation(logits, # labels_placeholder, # images_placeholder, # nlabels=exp_config.nlabels, # loss_type=exp_config.loss_type, # weak_supervision=True, # cnn_threshold=exp_config.cnn_threshold, # include_bg=True) eval_val_loss = model.evaluation( logits, labels_placeholder, images_placeholder, nlabels=exp_config.nlabels, loss_type=exp_config.loss_type, weak_supervision=True, cnn_threshold=exp_config.cnn_threshold, include_bg=False) # Build the summary Tensor based on the TF collection of Summaries. summary = tf.summary.merge_all() # Add the variable initializer Op. init = tf.global_variables_initializer() # Create a saver for writing training checkpoints. # Only keep two checkpoints, as checkpoints are kept for every recursion # and they can be 300MB + saver = tf.train.Saver(max_to_keep=2) saver_best_dice = tf.train.Saver(max_to_keep=2) saver_best_xent = tf.train.Saver(max_to_keep=2) # Create a session for running Ops on the Graph. sess = tf.Session() # Instantiate a SummaryWriter to output summaries and the Graph. summary_writer = tf.summary.FileWriter(log_dir, sess.graph) # with tf.name_scope('monitoring'): val_error_ = tf.placeholder(tf.float32, shape=[], name='val_error') val_error_summary = tf.summary.scalar('validation_loss', val_error_) val_dice_ = tf.placeholder(tf.float32, shape=[], name='val_dice') val_dice_summary = tf.summary.scalar('validation_dice', val_dice_) val_summary = tf.summary.merge( [val_error_summary, val_dice_summary]) train_error_ = tf.placeholder(tf.float32, shape=[], name='train_error') train_error_summary = tf.summary.scalar('training_loss', train_error_) train_dice_ = tf.placeholder(tf.float32, shape=[], name='train_dice') train_dice_summary = tf.summary.scalar('training_dice', train_dice_) train_summary = tf.summary.merge( [train_error_summary, train_dice_summary]) # Run the Op to initialize the variables. sess.run(init) # crf_training_variables =tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='crf_training_op') # print(str(crf_training_variables)) # all_crf_variables = crf_training_variables+crf_variables # print(str(all_crf_variables)) network_variables = tf.get_collection( tf.GraphKeys.GLOBAL_VARIABLES, scope='network_scope') load_variables = [] for v in network_variables: if 'Adam' in v.name: continue else: load_variables.append(v) # Restore session # crf_weights = [] # for v in tf.all_variables(): # # if v.name[0:4]=='bila': # print(str(v)) # crf_weights.append(v.name) # elif v.name[0:4] =='spat': # print(str(v)) # crf_weights.append(v.name) # elif v.name[0:4] =='comp': # print(str(v)) # crf_weights.append(v.name) # restore_var = [v for v in tf.all_variables() if v.name not in all_crf_variables] #///////////////////// # load_saver = tf.train.Saver(var_list=load_variables) # load_saver.restore(sess, '/scratch_net/biwirender02/cany/basil/logdir/unet2D_ws_spot_blur/recursion_0_model.ckpt-7499') #/////////////////////////// # if continue_run: # # Restore session # saver.restore(sess, init_checkpoint_path) saver.restore( sess, '/scratch_net/biwirender02/cany/scribble/logdir/twisted_full_network/recursion_2_model_best_dice.ckpt-43499' ) step = init_step curr_lr = exp_config.learning_rate crf_curr_lr = 1e-06 no_improvement_counter = 0 best_val = np.inf last_train = np.inf loss_history = [] loss_gradient = np.inf best_dice = 0 logging.info('RECURSION {0}'.format(recursion)) # random walk - if it already has been random walked it won't redo if start_epoch == 0: recursion_data = acdc_data.random_walk_epoch( recursion_data, exp_config.rw_beta, exp_config.rw_threshold, exp_config.random_walk) print("Random walku geçti") #get ground truths labels_train = np.array(recursion_data['random_walked']) print("Start epoch : " + str(start_epoch) + " : max epochs : " + str(exp_config.epochs_per_recursion)) for epoch in range(start_epoch, exp_config.max_epochs): if (epoch % exp_config.epochs_per_recursion == 0 and epoch != 0) \ or loaded_previous_recursion: loaded_previous_recursion = False #Have reached end of recursion recursion_data = predict_next_gt( data=recursion_data, images_train=images_train, images_placeholder=images_placeholder, training_time_placeholder=training_time_placeholder, logits=logits, sess=sess) # recursion_data = postprocess_gt(data=recursion_data, # images_train=images_train, # scribbles_train=scribbles_train) recursion += 1 # # random walk - if it already has been random walked it won't redo # recursion_data = acdc_data.random_walk_epoch(recursion_data, # exp_config.rw_beta, # exp_config.rw_threshold, # exp_config.random_walk) #get ground truths labels_train = np.array(recursion_data['predicted']) #reinitialise savers - otherwise, no checkpoints will be saved for each recursion saver = tf.train.Saver(max_to_keep=2) saver_best_dice = tf.train.Saver(max_to_keep=2) saver_best_xent = tf.train.Saver(max_to_keep=2) logging.info( 'Epoch {0} ({1} of {2} epochs for recursion {3})'.format( epoch, 1 + epoch % exp_config.epochs_per_recursion, exp_config.epochs_per_recursion, recursion)) # for batch in iterate_minibatches(images_train, # labels_train, # batch_size=exp_config.batch_size, # augment_batch=exp_config.augment_batch): # You can run this loop with the BACKGROUND GENERATOR, which will lead to some improvements in the # training speed. However, be aware that currently an exception inside this loop may not be caught. # The batch generator may just continue running silently without warning even though the code has # crashed. for batch in BackgroundGenerator( iterate_minibatches( images_train, labels_train, batch_size=exp_config.batch_size, augment_batch=exp_config.augment_batch)): if exp_config.warmup_training: if step < 50: curr_lr = exp_config.learning_rate / 10.0 elif step == 50: curr_lr = exp_config.learning_rate if ((step % 5000 == 0) & (step > 0)): curr_lr = curr_lr * 0.94 start_time = time.time() # batch = bgn_train.retrieve() x, y = batch # TEMPORARY HACK (to avoid incomplete batches if y.shape[0] < exp_config.batch_size: step += 1 continue network_feed_dict = { images_placeholder: x, labels_placeholder: y, learning_rate_placeholder: curr_lr, training_time_placeholder: True } crf_feed_dict = { images_placeholder: x, labels_placeholder: y, crf_learning_rate_placeholder: crf_curr_lr, training_time_placeholder: True } if (step % 1000 == 0): print("CRF variables : " + str(sess.run(crf_variables))) if (step % 10 == 0): _, loss_value = sess.run([crf_train_op, loss], feed_dict=crf_feed_dict) _, loss_value = sess.run([network_train_op, loss], feed_dict=network_feed_dict) duration = time.time() - start_time # Write the summaries and print an overview fairly often. if step % 10 == 0: # Print status to stdout. logging.info('Step %d: loss = %.6f (%.3f sec)' % (step, loss_value, duration)) # Update the events file. # summary_str = sess.run(summary, feed_dict=feed_dict) # summary_writer.add_summary(summary_str, step) # summary_writer.flush() # if (step + 1) % exp_config.train_eval_frequency == 0: # # logging.info('Training Data Eval:') # [train_loss, train_dice] = do_eval(sess, # eval_loss, # images_placeholder, # labels_placeholder, # training_time_placeholder, # images_train, # labels_train, # exp_config.batch_size) # # train_summary_msg = sess.run(train_summary, feed_dict={train_error_: train_loss, # train_dice_: train_dice} # ) # summary_writer.add_summary(train_summary_msg, step) # # loss_history.append(train_loss) # if len(loss_history) > 5: # loss_history.pop(0) # loss_gradient = (loss_history[-5] - loss_history[-1]) / 2 # # logging.info('loss gradient is currently %f' % loss_gradient) # # if exp_config.schedule_lr and loss_gradient < exp_config.schedule_gradient_threshold: # logging.warning('Reducing learning rate!') # curr_lr /= 10.0 # logging.info('Learning rate changed to: %f' % curr_lr) # # # reset loss history to give the optimisation some time to start decreasing again # loss_gradient = np.inf # loss_history = [] # # if train_loss <= last_train: # best_train: # logging.info('Decrease in training error!') # else: # logging.info('No improvement in training error for %d steps' % no_improvement_counter) # # last_train = train_loss # Save a checkpoint and evaluate the model periodically. if (step + 1) % exp_config.val_eval_frequency == 0: checkpoint_file = os.path.join( log_dir, 'recursion_{}_model.ckpt'.format(recursion)) saver.save(sess, checkpoint_file, global_step=step) # Evaluate against the training set. # Evaluate against the validation set. logging.info('Validation Data Eval:') [val_loss, val_dice ] = do_eval(sess, eval_val_loss, images_placeholder, labels_placeholder, training_time_placeholder, images_val, labels_val, exp_config.batch_size) val_summary_msg = sess.run(val_summary, feed_dict={ val_error_: val_loss, val_dice_: val_dice }) summary_writer.add_summary(val_summary_msg, step) if val_dice > best_dice: best_dice = val_dice best_file = os.path.join( log_dir, 'recursion_{}_model_best_dice.ckpt'.format( recursion)) saver_best_dice.save(sess, best_file, global_step=step) logging.info( 'Found new best dice on validation set! - {} - ' 'Saving recursion_{}_model_best_dice.ckpt'. format(val_dice, recursion)) text_file = open('val_results.txt', "a") text_file.write("\nVal dice " + str(step) + " : " + str(val_dice)) text_file.close() if val_loss < best_val: best_val = val_loss best_file = os.path.join( log_dir, 'recursion_{}_model_best_xent.ckpt'.format( recursion)) saver_best_xent.save(sess, best_file, global_step=step) logging.info( 'Found new best crossentropy on validation set! - {} - ' 'Saving recursion_{}_model_best_xent.ckpt'. format(val_loss, recursion)) step += 1 except Exception: raise
def run_training(continue_run): logging.info('EXPERIMENT NAME: %s' % exp_config.experiment_name) init_step = 0 # Load data base_data, recursion_data, recursion = acdc_data.load_and_maybe_process_scribbles(scribble_file=sys_config.project_root + exp_config.scribble_data, target_folder=log_dir, percent_full_sup=exp_config.percent_full_sup, scr_ratio=exp_config.length_ratio ) #wrap everything from this point onwards in a try-except to catch keyboard interrupt so #can control h5py closing data try: loaded_previous_recursion = False start_epoch = 0 if continue_run: logging.info('!!!!!!!!!!!!!!!!!!!!!!!!!!!! Continuing previous run !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!') try: try: init_checkpoint_path = utils.get_latest_model_checkpoint_path(log_dir, 'recursion_{}_model.ckpt'.format(recursion)) except: init_checkpoint_path = utils.get_latest_model_checkpoint_path(log_dir, 'recursion_{}_model.ckpt'.format(recursion - 1)) loaded_previous_recursion = True logging.info('Checkpoint path: %s' % init_checkpoint_path) init_step = int(init_checkpoint_path.split('/')[-1].split('-')[-1]) + 1 # plus 1 b/c otherwise starts with eval start_epoch = int(init_step/(len(base_data['images_train'])/4)) logging.info('Latest step was: %d' % init_step) logging.info('Continuing with epoch: %d' % start_epoch) except: logging.warning('!!! Did not find init checkpoint. Maybe first run failed. Disabling continue mode...') continue_run = False init_step = 0 start_epoch = 0 logging.info('!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!') if loaded_previous_recursion: logging.info("Data file exists for recursion {} " "but checkpoints only present up to recursion {}".format(recursion, recursion - 1)) logging.info("Likely means postprocessing was terminated") recursion_data = acdc_data.load_different_recursion(recursion_data, -1) recursion-=1 # load images and validation data images_train = np.array(base_data['images_train']) scribbles_train = np.array(base_data['scribbles_train']) images_val = np.array(base_data['images_test']) labels_val = np.array(base_data['masks_test']) config = tf.ConfigProto() config.gpu_options.allow_growth = True config.allow_soft_placement = True # with tf.Graph().as_default(): with tf.Session(config = config) as sess: # Generate placeholders for the images and labels. image_tensor_shape = [exp_config.batch_size] + list(exp_config.image_size) + [1] mask_tensor_shape = [exp_config.batch_size] + list(exp_config.image_size) images_placeholder = tf.placeholder(tf.float32, shape=image_tensor_shape, name='images') labels_placeholder = tf.placeholder(tf.uint8, shape=mask_tensor_shape, name='labels') learning_rate_placeholder = tf.placeholder(tf.float32, shape=[]) training_time_placeholder = tf.placeholder(tf.bool, shape=[]) tf.summary.scalar('learning_rate', learning_rate_placeholder) # Build a Graph that computes predictions from the inference model. logits = model.inference(images_placeholder, exp_config.model_handle, training=training_time_placeholder, nlabels=exp_config.nlabels) summary = tf.summary.merge_all() # Add the variable initializer Op. init = tf.global_variables_initializer() # Run the Op to initialize the variables. sess.run(init) saver = tf.train.Saver(max_to_keep=2) if continue_run: # Restore session saver.restore(sess, init_checkpoint_path) step = init_step curr_lr = exp_config.learning_rate no_improvement_counter = 0 best_val = np.inf last_train = np.inf loss_history = [] loss_gradient = np.inf best_dice = 0 logging.info('RECURSION {0}'.format(recursion)) # # random walk - if it already has been random walked it won't redo # recursion_data = acdc_data.random_walk_epoch(recursion_data, exp_config.rw_beta, exp_config.rw_threshold, exp_config.random_walk) #Have reached end of recursion recursion_data = predict_next_gt(data=recursion_data, images_train=images_train, images_placeholder=images_placeholder, training_time_placeholder=training_time_placeholder, logits=logits, sess=sess) recursion_data = postprocess_gt(data=recursion_data, images_train=images_train, scribbles_train=scribbles_train) recursion += 1 # random walk - if it already has been random walked it won't redo recursion_data = acdc_data.random_walk_epoch(recursion_data, exp_config.rw_beta, exp_config.rw_threshold, exp_config.random_walk) except Exception: raise