Example #1
0
elif sys.argv[2] == 'adam_L2':
    from acidano.utils.optim import adam_L2 as Optimization_method
elif sys.argv[2] == 'rmsprop':
    from acidano.utils.optim import rmsprop as Optimization_method
elif sys.argv[2] == 'sgd_nesterov':
    from acidano.utils.optim import sgd_nesterov as Optimization_method
else:
    raise ValueError(sys.argv[2] + " is not an optimization method")

############################################################
# System paths
############################################################
logging.info('System paths')
SOURCE_DIR = os.getcwd()
result_folder = SOURCE_DIR + u'/../Results/' + unit_type + '/' + script_param['temporal_granularity'] + '/' +\
    'quantization_' + str(script_param['quantization']) + '/' + Optimization_method.name() + '/' + Model_class.name()

# Check if the result folder exists
if not os.path.isdir(result_folder):
    os.makedirs(result_folder)

# Count number of files in the folder and name this hparam run by the number
hparam_run_counter = 0
while(os.path.isdir(result_folder + '/hrun_' + str(hparam_run_counter))):
        hparam_run_counter += 1
result_folder = result_folder + '/hrun_' + str(hparam_run_counter)
os.mkdir(result_folder)
script_param['result_folder'] = result_folder

# Data : .pkl files
data_folder = SOURCE_DIR + '/../Data'
Example #2
0
def train_hopt(max_evals, csv_file_path):
    # Create/reinit csv file
    open(csv_file_path, 'w').close()

    logger_hopt.info((u'WITH HYPERPARAMETER OPTIMIZATION').encode('utf8'))
    logger_hopt.info((u'**** Model : ' + Model_class.name()).encode('utf8'))
    logger_hopt.info((u'**** Optimization technic : ' + Optimization_method.name()).encode('utf8'))
    logger_hopt.info((u'**** Temporal granularity : ' + temporal_granularity).encode('utf8'))
    if binary_unit:
        logger_hopt.info((u'**** Binary unit (intensity discarded)').encode('utf8'))
    else:
        logger_hopt.info((u'**** Real valued unit (intensity taken into consideration)').encode('utf8'))
    logger_hopt.info((u'**** Quantization : ' + str(quantization)).encode('utf8'))

    # Define hyper-parameter search space for the model
    # Those are given by the static methods get_param_dico and get_hp_space
    model_space = Model_class.get_hp_space()
    optim_space = Optimization_method.get_hp_space()
    space = {'model': model_space, 'optim': optim_space}

    # Get the headers (i.e. list of hyperparameters tuned for printing and
    # save purposes)
    header = model_space.keys() + optim_space.keys() + ['accuracy']

    global run_counter
    run_counter = 0

    def run_wrapper(params):
        global run_counter
        run_counter += 1
        logger_hopt.info(('\n').encode('utf8'))
        logger_hopt.info((u'#'*40).encode('utf8'))
        logger_hopt.info((u'# Config :  {}'.format(run_counter)).encode('utf8'))

        # Build model and optim dico ################
        model_param = params['model']
        optim_param = params['optim']
        #############################################

        # Weights plotted and stored in a folder ####
        # Same for generated midi sequences #########
        weights_folder = result_folder + '/' + str(run_counter) + '/' + 'weights'
        if not os.path.isdir(weights_folder):
            os.makedirs(weights_folder)
        generated_folder = result_folder + '/' + str(run_counter) + '/generated_sequences'
        if not os.path.isdir(generated_folder):
            os.makedirs(generated_folder)
        model_folder = result_folder + '/' + str(run_counter) + '/model'
        if not os.path.isdir(model_folder):
            os.makedirs(model_folder)
        #############################################

        # Load data #################################
        time_load_0 = time.time()
        piano_train, orchestra_train, train_index, \
            piano_valid, orchestra_valid, valid_index, \
            piano_test, orchestra_test, test_index, generation_index \
            = load_data(LOCAL_SCRATCH + '/Data',
                        model_param['temporal_order'],
                        model_param['batch_size'],
                        binary_unit=binary_unit,
                        skip_sample=1,
                        logger_load=logger_load)
        time_load_1 = time.time()
        logger_load.info('TTT : Loading data took {} seconds'.format(time_load_1-time_load_0))
        ##############
        # visualize_mat(piano_train.get_value(), 'DEBUG', 'piano_train')
        # visualize_mat(orchestra_train.get_value(), 'DEBUG', 'orchestra_train')
        # visualize_mat(piano_test.get_value(), 'DEBUG', 'piano_test')
        # visualize_mat(orchestra_test.get_value(), 'DEBUG', 'orchestra_test')
        # visualize_mat(piano_valid.get_value(), 'DEBUG', 'piano_valid')
        # visualize_mat(orchestra_valid.get_value(), 'DEBUG', 'orchestra_valid')
        ##############
        # For large datasets
        #   http://deeplearning.net/software/theano/tutorial/aliasing.html
        #   use borrow=True (avoid copying the whole matrix) ?
        #   Load as much as the GPU can handle, train then load other
        #       part of the dataset using shared_variable.set_value(new_value)
        #############################################

        # Train #####################################
        time_train_0 = time.time()
        model, dico_res = train(piano_train, orchestra_train, train_index,
                                piano_valid, orchestra_valid, valid_index,
                                model_param, optim_param, max_iter, weights_folder)
        time_train_1 = time.time()
        logger_train.info('TTT : Training data took {} seconds'.format(time_train_1-time_train_0))
        error = -dico_res['accuracy']  # Search for a min
        #############################################

        # Generate ##################################
        time_generate_0 = time.time()
        generate(model,
                 piano_test, orchestra_test, generation_index,
                 generation_length, seed_size, quantization_write,
                 generated_folder, logger_generate)
        time_generate_1 = time.time()
        logger_generate.info('TTT : Generating data took {} seconds'.format(time_generate_1-time_generate_0))
        #############################################

        # Save ######################################
        save_model_file = open(model_folder + '/model.pkl', 'wb')
        pickle.dump(model, save_model_file, protocol=pickle.HIGHEST_PROTOCOL)
        #############################################

        # log
        logger_hopt.info((u'# Accuracy :  {}'.format(dico_res['accuracy'])).encode('utf8'))
        logger_hopt.info((u'###################\n').encode('utf8'))

        # Write the result in result.csv
        with open(csv_file_path, 'ab') as csvfile:
            writer = csv.DictWriter(csvfile, delimiter=',', fieldnames=header)
            writer.writerow(dico_res)

        return error

    # Calling get_param_dico with None return an empty dictionary,
    # Useful to get the header of hparam
    with open(csv_file_path, 'ab') as csvfile:
        # Write headers if they don't already exist
        writerHead = csv.writer(csvfile, delimiter=',')
        writerHead.writerow(header)

    best = fmin(run_wrapper, space, algo=tpe.suggest, max_evals=max_evals)

    return best
Example #3
0
def train(piano_train, orchestra_train, train_index,
          piano_valid, orchestra_valid, valid_index,
          model_param, optim_param, max_iter, weights_folder):
    ############################################################
    ############################################################
    ############################################################
    # model_param and optim_param are dictionaries
    # If you use train directly, bypassing the hparameter loop,
    # be careful that the keys match the constructor arguments of both model and optimizer

    # Log them
    logger_train.info((u'##### Model parameters').encode('utf8'))
    for k, v in model_param.iteritems():
        logger_train.info((u'# ' + k + ' :  {}'.format(v)).encode('utf8'))
    logger_train.info((u'##### Optimization parameters').encode('utf8'))
    for k, v in optim_param.iteritems():
        logger_train.info((u'# ' + k + ' :  {}'.format(v)).encode('utf8'))
    logger_generate.info((u'##### Generation parameters').encode('utf8'))
    logger_generate.info((u'# generation_length : ' + str(generation_length)).encode('utf8'))
    logger_generate.info((u'# seed_size : ' + str(seed_size)).encode('utf8'))
    logger_generate.info((u'# quantization_write : ' + str(quantization_write)).encode('utf8'))

    ################################################################
    ################################################################
    ################################################################
    # DATA
    piano_dim = piano_train.get_value().shape[1]
    orchestra_dim = orchestra_train.get_value().shape[1]
    n_train_batches = len(train_index)
    n_val_batches = len(valid_index)
    logger_load.info((u'##### Data').encode('utf8'))
    logger_load.info((u'# n_train_batch :  {}'.format(n_train_batches)).encode('utf8'))
    logger_load.info((u'# n_val_batch :  {}'.format(n_val_batches)).encode('utf8'))

    ################################################################
    ################################################################
    ################################################################
    # MODEL
    # dimensions dictionary
    dimensions = {'batch_size': model_param['batch_size'],
                  'temporal_order': model_param['temporal_order'],
                  'piano_dim': piano_dim,
                  'orchestra_dim': orchestra_dim}
    model = Model_class(model_param, dimensions)
    # Define an optimizer
    optimizer = Optimization_method(optim_param)

    ############################################################
    ############################################################
    ############################################################
    # COMPILE FUNCTIONS
    # Compilation of the training function is encapsulated in the class since the 'givens'
    # can vary with the model
    train_iteration = model.get_train_function(piano_train, orchestra_train, optimizer, name='train_iteration')
    # Same for the validation
    validation_error = model.get_validation_error(piano_valid, orchestra_valid, name='validation_error')

    ############################################################
    ############################################################
    ############################################################
    # TRAINING
    logger_train.info("#")
    logger_train.info("# Training")
    epoch = 0
    OVERFITTING = False
    DIVERGING = False
    val_tab = np.zeros(max(1,max_iter))
    while (not OVERFITTING
           and not DIVERGING
           and epoch!=max_iter):
        # go through the training set
        train_cost_epoch = []
        train_monitor_epoch = []
        for batch_index in xrange(n_train_batches):
            this_cost, this_monitor = train_iteration(train_index[batch_index])
            # Keep track of cost
            train_cost_epoch.append(this_cost)
            train_monitor_epoch.append(this_monitor)
        # Validation
        # For binary unit, it's an accuracy measure.
        # For real valued units its a gaussian centered value with variance 1
        accuracy = []
        for batch_index in xrange(n_val_batches):
            _, _, accuracy_batch = validation_error(valid_index[batch_index])
            accuracy += [accuracy_batch]

        # Early stopping criterion
        # Note that sum_{i=0}^{n} der = der(n) - der(0)
        # So mean over successive derivatives makes no sense
        # 1/ Get the mean derivative between 5 and 10 =
        #       \sum_{i=validation_order}^{validation_order+initial_derivative_length} E(i) - E(i-validation_order) / validation_order
        #
        # 2/ At each iteration, compare the mean derivative over the last five epochs :
        #       \sum_{i=0}^{validation_order} E(t)
        mean_accuracy = 100 * np.mean(accuracy)
        val_tab[epoch] = mean_accuracy
        if epoch == initial_derivative_length-1:
            ind = np.arange(validation_order-1, initial_derivative_length)
            increase_reference = (val_tab[ind] - val_tab[ind-validation_order+1]).sum() / (validation_order * len(ind))
            if increase_reference <= 0:
                # Early stop if the model didn't really improved over the first iteration
                DIVERGING = True
        elif epoch >= initial_derivative_length:
            ind = np.arange(epoch - check_derivative_length + 1, epoch+1)
            derivative_mean = (val_tab[ind] - val_tab[ind-validation_order+1]).sum() / (validation_order * len(ind))
            # Mean derivative is less than 10% of increase reference
            if derivative_mean < 0.1 * increase_reference:
                OVERFITTING = True

        # Monitor learning
        logger_train.info(('Epoch : {} , Monitor : {} , Cost : {} , Valid acc : {}'
                          .format(epoch, np.mean(train_monitor_epoch), np.mean(train_cost_epoch), mean_accuracy))
                          .encode('utf8'))
        if DIVERGING:
            logger_train.info('DIVERGING !!')
        elif OVERFITTING:
            logger_train.info('OVERFITTING !!')

        # Plot weights every ?? epoch
        if((epoch%20==0) or (epoch<5) or OVERFITTING or DIVERGING):
            weights_folder_epoch = weights_folder + '/' + str(epoch)
            if not os.path.isdir(weights_folder_epoch):
                os.makedirs(weights_folder_epoch)
            model.save_weights(weights_folder_epoch)

        epoch += 1

    # Return results
    best_accuracy = np.amax(val_tab)
    dico_res = model_param
    dico_res.update(optim_param)
    dico_res['accuracy'] = best_accuracy

    return model, dico_res
Example #4
0
    else:
        raise ValueError(sys.argv[2] + " is not an optimization method")

# System paths
MAIN_DIR = os.getcwd().decode('utf8') + u'/'
if 'LSCRATCH' in os.environ.keys():
    # We are on Guillimin
    LOCAL_SCRATCH = os.environ['LSCRATCH']
else:
    LOCAL_SCRATCH = '..'

data_folder = LOCAL_SCRATCH + u'/Data'
if ONLY_BUILD_DB:
    result_folder = MAIN_DIR + u'../Results/' + 'Only_build_db'
else:
    result_folder = MAIN_DIR + u'../Results/' + temporal_granularity + '/' + Optimization_method.name() + '/' + Model_class.name()
result_file = result_folder + u'/hopt_results.csv'
if ONLY_BUILD_DB:
    log_file_path = result_folder + '/build_db.log'
else:
    log_file_path = result_folder + '/' + Model_class.name() + u'.log'

# Fixed hyper parameter
max_evals = 50        # number of hyper-parameter configurations evaluated
max_iter = 100        # nb max of iterations when training 1 configuration of hparams
# Config is set now, no need to modify source below for standard use

# Validation
validation_order = 5
initial_derivative_length = 20
check_derivative_length = 5