from os import path #from mayavi import mlab from numpy import amax #from cPickle import dump, load from pickle import dump, load # see example3 t = TimeSamples(name='example_data.h5') cal = Calib(from_file='example_calib.xml') m = MicGeom(from_file=path.join(\ path.split(acoular.__file__)[0], 'xml', 'array_56.xml')) g = RectGrid3D(x_min=-0.6, x_max=-0.0, y_min=-0.3, y_max=0.3, \ z_min=0.48, z_max=0.88, increment=0.1) f = EigSpectra(time_data=t, window='Hanning', overlap='50%', block_size=128, ind_low=5, ind_high=15) csm = f.csm[:] eva = f.eva[:] eve = f.eve[:] #""" Creating the beamformers bb1Rem = BeamformerBase(freq_data=f, grid=g, mpos=m, r_diag=True, c=346.04, steer='classic') bb2Rem = BeamformerBase(freq_data=f, grid=g,
g = RectGrid(x_min=-0.6, x_max=-0.0, y_min=-0.3, y_max=0.3, z=0.68, increment=0.05) #=============================================================================== # for frequency domain methods, this provides the cross spectral matrix and its # eigenvalues and eigenvectors, if only the matrix is needed then class # PowerSpectra can be used instead #=============================================================================== f = EigSpectra( time_data=t1, window='Hanning', overlap='50%', block_size=128, #FFT-parameters ind_low=7, ind_high=15) #to save computational effort, only # frequencies with index 1-30 are used #=============================================================================== # different beamformers in frequency domain #=============================================================================== bb = BeamformerBase(freq_data=f, grid=g, mpos=m, r_diag=True, c=346.04) bc = BeamformerCapon(freq_data=f, grid=g, mpos=m, c=346.04, cached=False) be = BeamformerEig(freq_data=f, grid=g, mpos=m, r_diag=True, c=346.04, n=54) bm = BeamformerMusic(freq_data=f, grid=g, mpos=m, c=346.04, n=6) bd = BeamformerDamas(beamformer=bb, n_iter=100) bo = BeamformerOrth(beamformer=be, eva_list=list(range(38, 54))) bs = BeamformerCleansc(freq_data=f, grid=g, mpos=m, r_diag=True, c=346.04)
object_name.configure_traits() m = MicGeom(from_file='UCA8.xml') import matplotlib matplotlib.use('TkAgg') import matplotlib.pyplot as plt from os import path import acoular from acoular import L_p, Calib, MicGeom, TimeSamples, \ RectGrid, BeamformerBase, EigSpectra, BeamformerOrth, BeamformerCleansc, \ MaskedTimeSamples, FiltFiltOctave, BeamformerTimeSq, TimeAverage, \ TimeCache, BeamformerTime, TimePower, BeamformerCMF, \ BeamformerCapon, BeamformerMusic, BeamformerDamas, BeamformerClean, \ BeamformerFunctional object_name.configure_traits() m = MicGeom(from_file='UCA8.xml') m = MicGeom(from_file='UCA8.xml') g = RectGrid(x_min=-0.8, x_max=-0.2, y_min=-0.1, y_max=0.3, z=0.8, increment=0.01) t1 = TimeSamples(name='cry_n0000001.wav') f1 = EigSpectra(time_data=t1, block_size=256, window="Hanning", overlap='75%') e1 = BeamformerBase(freq_data=f1, grid=g, mpos=m, r_diag=False) fr = 4000 L1 = L_p(e1.synthetic(fr, 0)) object_name.configure_traits() m = MicGeom(from_file='UCA8.xml')