def audio_csv_extraction(filepath, trackname, st, firstframe):

    if DETAILEDINFO_LVL >= 3:
        print('[Azimuth, Elevation], max_value')

    ts = WavSamples(name=filepath,start=firstframe*NUM,stop=(firstframe+1)*NUM)
    ps = PowerSpectra(time_data=ts, block_size=512, window='Hanning')
    be = BeamformerEig(freq_data=ps, steer=st, r_diag=True, n=3)


    # be = BeamformerBase(freq_data=ps, steer=st, r_diag=True)

    # bb = BeamformerBase(freq_data=ps, steer=st)
    # bo = BeamformerOrth(beamformer=be, eva_list=[3])
    
# Extraktion von Framenummer (Spalte 0), Geräuschklasse (Spalte 1), Azi (Spalte 3) und Ele (Spalte 4) aus .csv-Datei
    csvpath = CSV_DIR+trackname+".csv"
    rawdata = loadtxt(open(csvpath, "rb"), dtype="int32", delimiter=",", usecols=(0,1,3,4))


    if TRAINING or JUST_1SOURCE_FRAMES:
        labeldata = rawdata = rm_2sources_frames(rawdata)


    if THRESHOLD_FILTER:
        soundpressure = zeros((600,1))
        
    ## Sound Pressure Level ##
        wavsamples = WavSamples(name = filepath).data[:,3]
        for frameindex, _ in enumerate(soundpressure[:,0]):
            soundpressure[frameindex,0] = sum(wavsamples[frameindex*NUM:(frameindex+1)*NUM]**2)/NUM
        spl = L_p(soundpressure[:,0])
    ##########################

        threshold = threshold_calculator(spl)

    ## Liste der per Threshold gefilterten Frames ##
        active_frames = []
        for index, frame in enumerate(spl):
            if frame > threshold:
                active_frames.append(index)
    ################################################
        # active_frames weiterhin eine Liste, aus der man Elemente
        # auch zwischendrin löschen kann
        # thrdata = array(active_frames).reshape((len(active_frames),1))

        thrdata = []
        for ind, frame in enumerate(rawdata[:,0]):
            if frame in active_frames:
                thrdata.append(rawdata[ind,:])
            
        labeldata = array(thrdata)

    if not(TRAINING or THRESHOLD_FILTER):
        labeldata = rawdata


    return ts, be, labeldata
Example #2
0
    def do_beamforming(self, mic_data):
        """ Beamforming using Acoular """
        mg, rg, st = self.get_acoular_essentials()

        count = 0
        #Divide audio samples as per frame rate (10fps) and do beamforming
        for s_time in tqdm(
                np.arange(self.start_time, self.end_time, self.interval)):

            audio_data = mic_data[:,
                                  int(s_time *
                                      self.sample_rate):int((s_time +
                                                             self.interval) *
                                                            self.sample_rate)]
            audio_data = np.transpose(audio_data)

            if audio_data.shape[0] == 0:
                continue

            #Acoular needs audio input through .h5 file
            target_file = self.outfile + '/temp.h5'

            if os.path.exists(target_file):
                os.remove(target_file)

            with h5py.File(target_file, 'w') as data_file:
                data_file.create_dataset('time_data', data=audio_data)
                data_file['time_data'].attrs.__setitem__(
                    'sample_freq', self.sample_rate)

            #.h5 file has issues with closing. Change 'ulimit' if not working

            ts = TimeSamples(name=target_file)
            ps = PowerSpectra(time_data=ts,
                              block_size=128,
                              window='Hanning',
                              overlap='50%')
            bb = BeamformerEig(freq_data=ps, steer=st)

            pm = bb.synthetic(self.freq_query, self.octave_band)
            Lm = L_p(pm)

            if count == 0:
                bf_data = np.zeros(
                    (Lm.shape[0], Lm.shape[1],
                     len(
                         np.arange(self.start_time, self.end_time,
                                   self.interval))))
                bf_data[:, :, count] = Lm
            else:
                bf_data[:, :, count] = Lm

            count += 1

        # remove temp.h5 file after its finished
        os.remove(target_file)

        return bf_data, rg
Example #3
0
def run():

    from os import path
    from acoular import __file__ as bpath, MicGeom, WNoiseGenerator, PointSource,\
     Mixer, WriteH5, TimeSamples, PowerSpectra, RectGrid, SteeringVector,\
     BeamformerBase, L_p
    from pylab import figure, plot, axis, imshow, colorbar, show

    # set up the parameters
    sfreq = 51200
    duration = 1
    nsamples = duration * sfreq
    micgeofile = path.join(path.split(bpath)[0], 'xml', 'array_64.xml')
    h5savefile = 'three_sources.h5'

    # generate test data, in real life this would come from an array measurement
    mg = MicGeom(from_file=micgeofile)
    n1 = WNoiseGenerator(sample_freq=sfreq, numsamples=nsamples, seed=1)
    n2 = WNoiseGenerator(sample_freq=sfreq,
                         numsamples=nsamples,
                         seed=2,
                         rms=0.7)
    n3 = WNoiseGenerator(sample_freq=sfreq,
                         numsamples=nsamples,
                         seed=3,
                         rms=0.5)
    p1 = PointSource(signal=n1, mics=mg, loc=(-0.1, -0.1, 0.3))
    p2 = PointSource(signal=n2, mics=mg, loc=(0.15, 0, 0.3))
    p3 = PointSource(signal=n3, mics=mg, loc=(0, 0.1, 0.3))
    pa = Mixer(source=p1, sources=[p2, p3])
    wh5 = WriteH5(source=pa, name=h5savefile)
    wh5.save()

    # analyze the data and generate map

    ts = TimeSamples(name=h5savefile)
    ps = PowerSpectra(time_data=ts, block_size=128, window='Hanning')

    rg = RectGrid( x_min=-0.2, x_max=0.2, y_min=-0.2, y_max=0.2, z=0.3, \
    increment=0.01 )
    st = SteeringVector(grid=rg, mics=mg)

    bb = BeamformerBase(freq_data=ps, steer=st)
    pm = bb.synthetic(8000, 3)
    Lm = L_p(pm)

    # show map
    imshow( Lm.T, origin='lower', vmin=Lm.max()-10, extent=rg.extend(), \
    interpolation='bicubic')
    colorbar()

    # plot microphone geometry
    figure(2)
    plot(mg.mpos[0], mg.mpos[1], 'o')
    axis('equal')

    show()
Example #4
0
 sfreq= 12800
 
 n1 = WNoiseGenerator(sample_freq = sfreq, 
                      numsamples = 10*sfreq, 
                      seed = 1)
 
 m = MicGeom()
 m.mpos_tot = array([[0,0,0]])
 
 t = PointSource(signal = n1, 
                 mpos = m,  
                 loc = (1, 0, 1))
 
 
 f = PowerSpectra(time_data = t, 
                  window = 'Hanning', 
                  overlap = '50%', 
                  block_size = 4096)
 ###################################################################
 ### Plotting ###
 from pylab import figure,plot,show,xlim,ylim,xscale,xticks,xlabel,ylabel,grid,real
 from acoular import L_p              
 
                  
 band = 3 # octave: 1 ;   1/3-octave: 3
 (f_borders, p, f_center) = barspectrum(real(f.csm[:,0,0]), f.fftfreq(), band)
 
 label_freqs = [str(int(_)) for _ in f_center]
 
 
 figure(figsize=(20, 6))
 
Example #5
0
g = RectGrid(x_min=-0.6,
             x_max=-0.0,
             y_min=-0.3,
             y_max=0.3,
             z=0.68,
             increment=0.05)

#===============================================================================
# for frequency domain methods, this provides the cross spectral matrix and its
# eigenvalues and eigenvectors, if only the matrix is needed then class
# PowerSpectra can be used instead
#===============================================================================
f = PowerSpectra(
    time_data=t1,
    window='Hanning',
    overlap='50%',
    block_size=128,  #FFT-parameters
    ind_low=8,
    ind_high=16)  #to save computational effort, only
# frequencies with indices 8..15 are used

#===============================================================================
# different beamformers in frequency domain
#===============================================================================
bb = BeamformerBase(freq_data=f, grid=g, mpos=m, r_diag=True, c=346.04)
bc = BeamformerCapon(freq_data=f, grid=g, mpos=m, c=346.04, cached=False)
be = BeamformerEig(freq_data=f, grid=g, mpos=m, r_diag=True, c=346.04, n=54)
bm = BeamformerMusic(freq_data=f, grid=g, mpos=m, c=346.04, n=6)
bd = BeamformerDamas(beamformer=bb, n_iter=100)
bo = BeamformerOrth(beamformer=be, eva_list=list(range(38, 54)))
bs = BeamformerCleansc(freq_data=f, grid=g, mpos=m, r_diag=True, c=346.04)
wh5.save()

#definition the different source signal
r = 52.5
nsamples = long(sfreq * 0.3)
n1 = WNoiseGenerator(sample_freq=sfreq, numsamples=nsamples)
s1 = SineGenerator(sample_freq=sfreq, numsamples=nsamples, freq=freq)
s2 = SineGenerator(sample_freq=sfreq, numsamples=nsamples, freq=freq, \
    phase=pi)

#define a circular array of 8 microphones
m = MicGeom('array_64_8mic.xml')
m.mpos_tot = array([(r*sin(2*pi*i+pi/8), r*cos(2*pi*i+pi/8), 0) \
    for i in linspace(0.0, 1.0, 8, False)]).T
t = MaskedTimeSamples(name=datafile)
f = PowerSpectra(time_data=t, window='Hanning', overlap='50%', block_size=128, \
    ind_low=1,ind_high=30)
g = RectGrid(x_min=0 - .2,
             x_max=0.3,
             y_min=-0.13,
             y_max=0.3,
             z=0,
             increment=0.05)
bb = BeamformerBase(freq_data=f, grid=g, mpos=m, r_diag=True, c=346.04)
bc = BeamformerCapon(freq_data=f, grid=g, mpos=m, c=346.04, cached=False)
be = BeamformerEig(freq_data=f, grid=g, mpos=m, r_diag=True, c=346.04, n=54)
bm = BeamformerMusic(freq_data=f, grid=g, mpos=m, c=346.04, n=6)
bd = BeamformerDamas(beamformer=bb, n_iter=100)
bo = BeamformerOrth(beamformer=be, eva_list=list(range(38, 54)))
bs = BeamformerCleansc(freq_data=f, grid=g, mpos=m, r_diag=True, c=346.04)
bcmf = BeamformerCMF(freq_data=f, grid=g, mpos=m, c=346.04, \
    method='LassoLarsBIC')
Example #7
0
# generate test data, in real life this would come from an array measurement
mg = MicGeom( from_file=micgeofile )
n1 = WNoiseGenerator( sample_freq=sfreq, numsamples=nsamples, seed=1 )
n2 = WNoiseGenerator( sample_freq=sfreq, numsamples=nsamples, seed=2, rms=0.7 )
n3 = WNoiseGenerator( sample_freq=sfreq, numsamples=nsamples, seed=3, rms=0.5 )
p1 = PointSource( signal=n1, mpos=mg,  loc=(-0.1,-0.1,0.3) )
p2 = PointSource( signal=n2, mpos=mg,  loc=(0.15,0,0.3) )
p3 = PointSource( signal=n3, mpos=mg,  loc=(0,0.1,0.3) )
pa = Mixer( source=p1, sources=[p2,p3] )
wh5 = WriteH5( source=pa, name=h5savefile )
wh5.save()

# analyze the data and generate map
ts = TimeSamples( name=h5savefile )
ps = PowerSpectra( time_data=ts, block_size=128, window='Hanning' )
rg = RectGrid( x_min=-0.2, x_max=0.2, y_min=-0.2, y_max=0.2, z=0.3, \
increment=0.01 )
bb = BeamformerBase( freq_data=ps, grid=rg, mpos=mg )
pm = bb.synthetic( 8000, 3 )
Lm = L_p( pm )

# show map
imshow( Lm.T, origin='lower', vmin=Lm.max()-10, extent=rg.extend(), \
interpolation='bicubic')
colorbar()

# plot microphone geometry
figure(2)
plot(mg.mpos[0],mg.mpos[1],'o')
axis('equal')
Example #8
0
m.invalid_channels = invalid

g = RectGrid(x_min=-0.6,
             x_max=-0.0,
             y_min=-0.3,
             y_max=0.3,
             z=0.68,
             increment=0.05)

env = Environment(c=346.04)

st = SteeringVector(grid=g, mics=m, env=env)

f = PowerSpectra(
    time_data=t1,
    window='Hanning',
    overlap='50%',
    block_size=128,  #FFT-parameters
    cached=False)  #cached = False

bb = BeamformerBase(freq_data=f, steer=st, r_diag=True, cached=False)
bc = BeamformerCapon(freq_data=f, steer=st, cached=False)
be = BeamformerEig(freq_data=f, steer=st, r_diag=True, n=54, cached=False)
bm = BeamformerMusic(freq_data=f, steer=st, n=6, cached=False)
bd = BeamformerDamas(beamformer=bb, n_iter=100, cached=False)
bdp = BeamformerDamasPlus(beamformer=bb, n_iter=100, cached=False)
bo = BeamformerOrth(beamformer=be, eva_list=list(range(38, 54)), cached=False)
bs = BeamformerCleansc(freq_data=f, steer=st, r_diag=True, cached=False)
bcmf = BeamformerCMF(freq_data=f,
                     steer=st,
                     method='LassoLarsBIC',
                     cached=False)
Example #9
0
# constants
sfreq = 12800  # sample frequency
band = 3  # octave: 1 ;   1/3-octave: 3 (for plotting)

# set up microphone at (0,0,0)
m = MicGeom()
m.mpos_tot = array([[0, 0, 0]])

# create noise source
n1 = WNoiseGenerator(sample_freq=sfreq, numsamples=10 * sfreq, seed=1)

t = PointSource(signal=n1, mics=m, loc=(1, 0, 1))

# create power spectrum
f = PowerSpectra(time_data=t, window='Hanning', overlap='50%', block_size=4096)

# get spectrum data
spectrum_data = real(f.csm[:, 0,
                           0])  # get power spectrum from cross-spectral matrix
freqs = f.fftfreq()  # FFT frequencies

# use barspectrum from acoular.tools to create third octave plot data
(f_borders, p, f_center) = barspectrum(spectrum_data, freqs, band, bar=True)
(f_borders_, p_, f_center_) = barspectrum(spectrum_data,
                                          freqs,
                                          band,
                                          bar=False)

# create figure with barspectra
figure(figsize=(20, 6))
               x_max=0.2,
               y_min=-0.2,
               y_max=0.2,
               z_min=0.1,
               z_max=0.36,
               increment=0.02)

#===============================================================================
# The following provides the cross spectral matrix and defines the CLEAN-SC beamformer.
# To be really fast, we restrict ourselves to only 10 frequencies
# in the range 2000 - 6000 Hz (5*400 - 15*400)
#===============================================================================

f = PowerSpectra(time_data=pa,
                 window='Hanning',
                 overlap='50%',
                 block_size=128,
                 ind_low=5,
                 ind_high=16)
st = SteeringVector(grid=g, mics=m, steer_type='true location')
b = BeamformerCleansc(freq_data=f, steer=st)

#===============================================================================
# Calculate the result for 4 kHz octave band
#===============================================================================

map = b.synthetic(4000, 1)

#===============================================================================
# Display views of setup and result.
# For each view, the values along the repsective axis are summed.
# Note that, while Acoular uses a left-oriented coordinate system,
Example #11
0
if __name__ == '__main__':
    ###################################################################
    ### Defining noise source ###
    from acoular import WNoiseGenerator, PointSource, PowerSpectra, MicGeom

    sfreq = 12800

    n1 = WNoiseGenerator(sample_freq=sfreq, numsamples=10 * sfreq, seed=1)

    m = MicGeom()
    m.mpos_tot = array([[0, 0, 0]])

    t = PointSource(signal=n1, mpos=m, loc=(1, 0, 1))

    f = PowerSpectra(time_data=t,
                     window='Hanning',
                     overlap='50%',
                     block_size=4096)
    ###################################################################
    ### Plotting ###
    from pylab import figure, plot, show, xlim, ylim, xscale, xticks, xlabel, ylabel, grid, real
    from acoular import L_p

    band = 3  # octave: 1 ;   1/3-octave: 3
    (f_borders, p, f_center) = barspectrum(real(f.csm[:, 0, 0]), f.fftfreq(),
                                           band)

    label_freqs = [str(int(_)) for _ in f_center]

    figure(figsize=(20, 6))

    plot(f_borders, L_p(p))