def generate(self, n_noise_samples=1): """Generate noise samples. The type of the noise that will be generated, and the size of the noise array are defined by the argument given to the constructor. :param n_noise_samples: The number of noise samples to be generated. :return: an np.array with the specified noise """ n = n_noise_samples * self.noise_size[0] * self.noise_size[1] s = concat([n_noise_samples], list(self.noise_size)) if self.noise_type == 'simplistic': return np.random.uniform(0, 1, size=concat([n_noise_samples], list(self.noise_size))) elif self.noise_type.lower() in {'gaussian', 'white', 'normal'}: return np.reshape(white(n), s) elif self.noise_type.lower() == 'pink': return np.reshape(pink(n), s) elif self.noise_type.lower() == 'blue': return np.reshape(blue(n), s) elif self.noise_type.lower() == 'brown': return np.reshape(brown(n), s) elif self.noise_type.lower() == 'violet': return np.reshape(violet(n), s) else: print("WARNING: noise type " + self.noise_type + " not defined. Returning 0") return np.reshape(np.zeros(n), s)
def noise_make(sound, numbers_of_samples, factor): noise = generator.brown(numbers_of_samples) noise = noise * factor low = 0.23 high = 0.8 b, a = signal.butter(4, (low, high), btype="bandpass") ## filtr pasmowo przepustowy output_signal = signal.filtfilt(b, a, noise) #output_signal += sound return output_signal
def test_power(self): fs = 44100 samples = 44100 * 10 _, L = octaves(brown(samples), fs) change = np.diff(L).mean().round(0) assert (change == -3.)
def test_length(self): N = 1000 assert (len(brown(N)) == N)
def test_power_density(self): fs = 44100 samples = 44100 * 10 _, L = octaves(brown(samples), fs, density=True) change = np.diff(L).mean().round(0) assert (change == -6.)
def test_length(self): N = 1000 assert(len(brown(N))==N)
def test_power_density(self): fs = 44100 samples = 44100 * 10 _, L = octaves(brown(samples), fs, density=True); change = np.diff(L).mean().round(0) assert(change==-6.)
def test_power(self): fs = 44100 samples = 44100 * 10 _, L = octaves(brown(samples), fs); change = np.diff(L).mean().round(0) assert(change==-3.)