def show_animation(robot, scene, qa, qb): q_path = np.linspace(qa, qb, 10) fig, ax = get_default_axes3d([-0.8, 0.8], [0, 1.6], [-0.2, 1.4]) ax.set_axis_off() ax.view_init(elev=31, azim=-15) scene.plot(ax, c="green") robot.animate_path(fig, ax, q_path) plt.show()
def test_torch_model(): fig, ax = get_default_axes3d([-0.10, 0.20], [0, 0.30], [-0.15, 0.15]) plot_reference_frame(ax, torch.tf_tool_tip) torch.plot(ax, tf=np.eye(4), c="k") for tf in torch.tf_s: plot_reference_frame(ax, tf) plot_reference_frame(ax, torch.tf_tool_tip)
def test_create_axes_3d(): fig, ax = get_default_axes3d() assert isinstance(fig, matplotlib.pyplot.Figure) assert isinstance(ax, mpl_toolkits.mplot3d.Axes3D)
# ====================================================== # Calculate forward and inverse kinematics # ====================================================== # forward kinematics are available by default T_fk = robot.fk([0.1, 0.2, 0.3, 0.4, 0.5, 0.6]) # inverse kinematics are implemented for specific robots ik_solution = robot.ik(T_fk) print(f"Inverse kinematics successful? {ik_solution.success}") for q in ik_solution.solutions: print(q) # ====================================================== # Animate path and planning scene # ====================================================== import matplotlib.pyplot as plt from acrolib.plotting import get_default_axes3d fig, ax = get_default_axes3d([-0.8, 0.8], [-0.8, 0.8], [-0.2, 1.4]) ax.set_axis_off() ax.view_init(elev=31, azim=-15) scene.plot(ax, c="green") robot.animate_path(fig, ax, q_path) # robot.animation.save("examples/robot_animation.gif", writer="imagemagick", fps=10) plt.show()
def test_plot_reference_frame(): _, ax = get_default_axes3d() plot_reference_frame(ax) plot_reference_frame(ax, tf=np.eye(4)) plot_reference_frame(ax, tf=np.eye(4), arrow_length=0.3)