def test_shift_conversion(self): conv = Converter(shift_z_offset=0.0, box=self.box) image = OrthographicImage( self.read_image(self.file_path / self.image_name), 2000.0, 0.22, 0.4, '', Config.default_image_pose) action = Action() action.type = 'shift' action.pose = RobotPose() action.pose.x = -0.02 action.pose.y = 0.105 action.pose.a = 1.52 action.pose.d = 0.078 action.index = 1 action.shift_motion = [0.03, 0.0] draw_pose(image, action.pose, convert_to_rgb=True) draw_around_box(image, box=self.box, draw_lines=True) imageio.imwrite(str(self.file_path / 'gen-shift-draw-pose.png'), image.mat) self.assertTrue(conv.shift_check_safety(action, [image])) conv.calculate_pose(action, [image]) self.assertLess(action.pose.z, 0.0)
def test_action(self): p = RobotPose() self.assertEqual(p.d, 0.0) a = Action() a.index = 1 self.assertEqual(a.index, 1) a_data = a.__dict__ self.assertEqual(a_data['index'], 1)
def test_grasp_conversion(self): conv = Converter(grasp_z_offset=0.0, box=self.box) image = OrthographicImage( self.read_image(self.file_path / self.image_name), 2000.0, 0.22, 0.4, '', Config.default_image_pose) action = Action() action.type = 'grasp' action.pose.x = -0.06 action.pose.y = 0.099 action.pose.a = 0.523 action.pose.d = 0.078 action.index = 1 draw_pose(image, action.pose, convert_to_rgb=True) draw_around_box(image, box=self.box, draw_lines=True) imageio.imwrite(str(self.file_path / 'gen-grasp-draw-pose.png'), image.mat) self.assertTrue(conv.grasp_check_safety(action, [image])) conv.calculate_pose(action, [image]) self.assertLess(action.pose.z, 0.0)
def infer( self, images: List[OrthographicImage], method: SelectionMethod, verbose=1, uncertainty_images: List[OrthographicImage] = None, ) -> Action: start = time.time() if method == SelectionMethod.Random: action = Action() action.index = np.random.choice(range(3)) action.pose = RobotPose(affine=Affine( x=np.random.uniform(self.lower_random_pose[0], self.upper_random_pose[0]), # [m] y=np.random.uniform(self.lower_random_pose[1], self.upper_random_pose[1]), # [m] a=np.random.uniform(self.lower_random_pose[3], self.upper_random_pose[3]), # [rad] )) action.estimated_reward = -1 action.estimated_reward_std = 0.0 action.method = method action.step = 0 return action input_images = [self.get_images(i) for i in images] result = self.model.predict(input_images) if self.with_types: estimated_reward = result[0] types = result[1] else: estimated_reward = result estimated_reward_std = np.zeros(estimated_reward.shape) filter_method = method filter_measure = estimated_reward # Calculate model uncertainty if self.monte_carlo: rewards_sampling = [ self.model.predict(input_images) for i in range(self.monte_carlo) ] estimated_reward = np.mean(rewards_sampling, axis=0) estimated_reward_std += self.mutual_information(rewards_sampling) if verbose: logger.info(f'Current monte carlo s: {self.current_s}') # Calculate input uncertainty if self.input_uncertainty: input_uncertainty_images = [ self.get_images(i) for i in uncertainty_images ] array_estimated_unc = tkb.get_session().run( self.propagation_input_uncertainty, feed_dict={ self.model.input: input_images[0], self.uncertainty_placeholder: input_uncertainty_images[0] }) estimated_input_uncertainty = np.concatenate(array_estimated_unc, axis=3) estimated_reward_std += 0.0025 * estimated_input_uncertainty # Adapt filter measure for more fancy SelectionMethods if method == SelectionMethod.Top5LowerBound: filter_measure = estimated_reward - estimated_reward_std filter_method = SelectionMethod.Top5 elif method == SelectionMethod.BayesTop: filter_measure = self.probability_in_policy( estimated_reward, s=self.current_s) * estimated_reward_std filter_method = SelectionMethod.Top5 elif method == SelectionMethod.BayesProb: filter_measure = self.probability_in_policy( estimated_reward, s=self.current_s) * estimated_reward_std filter_method = SelectionMethod.Prob filter_lambda = self.get_filter(filter_method) # Set some action (indices) to zero if self.keep_indixes: self.keep_array_at_last_indixes(filter_measure, self.keep_indixes) # Grasp specific types if self.with_types and self.current_type > -1: alpha = 0.7 factor_current_type = np.tile( np.expand_dims(types[:, :, :, self.current_type], axis=-1), reps=(1, 1, 1, estimated_reward.shape[-1])) factor_alt_type = np.tile(np.expand_dims(types[:, :, :, 1], axis=-1), reps=(1, 1, 1, estimated_reward.shape[-1])) filter_measure = estimated_reward * (alpha * factor_current_type + (1 - alpha) * factor_alt_type) # Find the index and corresponding action using the selection method index_raveled = filter_lambda(filter_measure) index = np.unravel_index(index_raveled, filter_measure.shape) action = Action() action.index = index[3] action.pose = self.pose_from_index(index, filter_measure.shape, images[0]) action.estimated_reward = estimated_reward[index] action.estimated_reward_std = estimated_reward_std[index] action.method = method action.step = 0 # Default value if verbose: logger.info(f'NN inference time [s]: {time.time() - start:.3}') return action
def define_action(d=0.0, index=0): a = Action() a.pose.d = d a.index = index return a
def infer( self, images: List[OrthographicImage], goal_images: List[OrthographicImage], method: SelectionMethod, verbose=1, place_images: List[OrthographicImage] = None, ) -> List[Action]: start = time.time() if method == SelectionMethod.Random: grasp_action = Action(action_type='grasp') grasp_action.index = np.random.choice(range(3)) grasp_action.pose = RobotPose(affine=Affine( x=np.random.uniform(self.lower_random_pose[0], self.upper_random_pose[0]), # [m] y=np.random.uniform(self.lower_random_pose[1], self.upper_random_pose[1]), # [m] a=np.random.uniform(self.lower_random_pose[3], self.upper_random_pose[3]), # [rad] )) grasp_action.estimated_reward = -1 grasp_action.estimated_reward_std = 0.0 grasp_action.method = method grasp_action.step = 0 place_action = Action(action_type='place') place_action.index = np.random.choice(range(3)) place_action.pose = RobotPose(affine=Affine( x=np.random.uniform(self.lower_random_pose[0], self.upper_random_pose[0]), # [m] y=np.random.uniform(self.lower_random_pose[1], self.upper_random_pose[1]), # [m] a=np.random.uniform(self.lower_random_pose[3], self.upper_random_pose[3]), # [rad] )) place_action.estimated_reward = -1 place_action.estimated_reward_std = 0.0 place_action.method = method place_action.step = 0 return [grasp_action, place_action] input_images = [self.get_images(i) for i in images] goal_input_images = [self.get_images(i) for i in goal_images] if self.network_type == '2' and not place_images: raise Exception( f'Place images are missing for network type {self.network_type}' ) elif place_images: place_input_images = [self.get_images(i) for i in place_images] grasp_input = input_images + goal_input_images if self.network_type == '1' else input_images place_input = input_images + goal_input_images if self.network_type == '1' else place_input_images + goal_input_images m_reward, m_z = self.grasp_model.predict(grasp_input, batch_size=128) # m_reward, *m_z_list = self.grasp_model.predict(grasp_input, batch_size=128) # m_z_list = tuple(np.expand_dims(m_zi, axis=3) for m_zi in m_z_list) # m_z = np.concatenate(m_z_list, axis=3) p_reward, p_z = self.place_model.predict(place_input, batch_size=128) if self.keep_indixes: self.keep_array_at_last_indixes(m_reward, self.keep_indixes) first_method = SelectionMethod.PowerProb if method in [ SelectionMethod.Top5, SelectionMethod.Max ] else method # first_method = SelectionMethod.Top5 filter_lambda_n_grasp = self.get_filter_n(first_method, self.number_top_grasp) filter_lambda_n_place = self.get_filter_n(first_method, self.number_top_place) m_top_index = filter_lambda_n_grasp(m_reward) p_top_index = filter_lambda_n_place(p_reward) m_top_index_unraveled = np.transpose( np.asarray(np.unravel_index(m_top_index, m_reward.shape))) p_top_index_unraveled = np.transpose( np.asarray(np.unravel_index(p_top_index, p_reward.shape))) # print(m_top_index_unraveled.tolist()) # print(p_top_index_unraveled.tolist()) m_top_z = m_z[m_top_index_unraveled[:, 0], m_top_index_unraveled[:, 1], m_top_index_unraveled[:, 2]] # m_top_z = m_z[m_top_index_unraveled[:, 0], m_top_index_unraveled[:, 1], m_top_index_unraveled[:, 2], m_top_index_unraveled[:, 3]] p_top_z = p_z[p_top_index_unraveled[:, 0], p_top_index_unraveled[:, 1], p_top_index_unraveled[:, 2]] reward = self.merge_model.predict([m_top_z, p_top_z], batch_size=2**12) m_top_reward = m_reward[m_top_index_unraveled[:, 0], m_top_index_unraveled[:, 1], m_top_index_unraveled[:, 2], m_top_index_unraveled[:, 3]] # p_top_reward = p_reward[p_top_index_unraveled[:, 0], p_top_index_unraveled[:, 1], p_top_index_unraveled[:, 2]] m_top_reward_repeated = np.repeat(np.expand_dims(np.expand_dims( m_top_reward, axis=1), axis=1), self.number_top_place, axis=1) filter_measure = reward * m_top_reward_repeated filter_lambda = self.get_filter(method) index_raveled = filter_lambda(filter_measure) index_unraveled = np.unravel_index(index_raveled, reward.shape) m_index = m_top_index_unraveled[index_unraveled[0]] p_index = p_top_index_unraveled[index_unraveled[1]] grasp_action = Action(action_type='grasp') grasp_action.index = m_index[3] grasp_action.pose = self.pose_from_index(m_index, m_reward.shape, images[0]) grasp_action.estimated_reward = m_reward[tuple(m_index)] grasp_action.method = method grasp_action.step = 0 place_action = Action(action_type='place') place_action.index = p_index[3] place_action.pose = self.pose_from_index(p_index, p_reward.shape, images[0], resolution_factor=1.0) place_action.estimated_reward = reward[ index_unraveled] # reward[index_raveled, 0] # p_reward[tuple(p_index)] place_action.method = method place_action.step = 0 if verbose: logger.info(f'NN inference time [s]: {time.time() - start:.3}') return [grasp_action, place_action]