def test_substration_and_negation():
    x = ad.Variable("x")
    y = ad.Exp(2 * x) - x
    yd1 = y.d_expr()
    assert np.isclose(yd1.eval({x: 0.0}), 1.0)

    y = -ad.Exp(3 * x)
    yd1 = y.d_expr()
    assert np.isclose(yd1.eval({x: 0.0}), -3.0)
Example #2
0
def test_single_variable_trig_hyperbolic_2():
    x = ad.Variable()
    # x^2  Cosh[Sin[x] + Tanh[Exp[3 * x] + Log[x]]]
    g = ad.Sin(x) + ad.Tanh(ad.Exp(3 * x) + ad.Log(x))
    f = x * x * ad.Cosh(g)
    assert (equals(f.hessian({x: 1}), 11.464317742))
    assert (equals(f.hessian({x: 2}), -13.704377252))
def test_logexp_multivar_hessian_2():
    x, y, z = ad.Variable(), ad.Variable(), ad.Variable()
    f = ad.Sinh(ad.Exp(x - 3.0) * y) + ad.Log(y + x**2) * z * ad.Sin(x)
    h = f.hessian({x: 1, y: 3, z: 5})
    assert (equals(h[x][x], -1.5705707143))
    assert (equals(h[y][y], -0.2553174360))
    assert (equals(h[z][z], 0))
    assert (equals(h[x][y], 0.31902899408))
    assert (equals(h[y][z], 0.2103677462))
    assert (equals(h[x][z], 1.1697535323))
Example #4
0
def test_exp_exceptions():
    x = ad.Variable('x')
    y = ad.Exp(x)
    z = ad.Cos(x)
    a = ad.Log(x)
    b = ad.Sin(x)
    f1 = y*2 + y
    f2 = z*2 + z
    f3 = a*2 + a
    f4 = b*2 + b
    assert np.isclose(f1.d_n(1, 1), 8.154845485377136)
    assert np.isclose(f2.d_n(1, 1), -2.5244129544236893)
    assert np.isclose(f3.d_n(1, 1), 3.0)
    assert np.isclose(f4.d_n(1, 1), 1.6209069176044193)
Example #5
0
def test_hyperbolic_expressions():
    x = ad.Variable('x')
    y = ad.Variable('y')
    f1 = ad.Tan(x)
    f2 = ad.Sinh(x)
    f3 = ad.Cosh(x)
    f4 = ad.Tanh(x)
    f5 = ad.Exp(x)
    f6 = ad.Cos(x)
    assert f1._d_expr(y).eval({x:1}) == 0
    assert np.isclose(f1._d_expr(x).eval({x:1}), f1.d({x: 1}))
    assert f2._d_expr(y).eval({x:1}) == 0
    assert np.isclose(f2._d_expr(x).eval({x:1}), f2.d({x: 1}))
    assert f3._d_expr(y).eval({x:1}) == 0
    assert np.isclose(f3._d_expr(x).eval({x:1}), f3.d({x: 1}))
    assert f4._d_expr(y).eval({x:1}) == 0
    assert np.isclose(f4._d_expr(x).eval({x:1}), f4.d({x: 1}))
    assert f5._d_expr(y).eval({x:1}) == 0
    assert np.isclose(f5._d_expr(x).eval({x:1}), f5.d({x: 1}))
    assert f6._d_expr(y).eval({x:1}) == 0
    assert np.isclose(f6._d_expr(x).eval({x:1}), f6.d({x: 1}))
Example #6
0
def test_unop():
    x = ad.Variable("x")

    y = -x
    assert np.isclose(y.d_n(n=0, val=2.0), -2.0)
    assert np.isclose(y.d_n(n=1, val=2.0), -1.0)
    assert np.isclose(y.d_n(n=2, val=2.0), 0.0)

    y = ad.Sin(2 * x)
    assert np.isclose(y.d_n(n=0, val=0.0), 0.0)
    assert np.isclose(y.d_n(n=1, val=0.0), 2.0)
    assert np.isclose(y.d_n(n=3, val=0.0), -8.0)

    y = ad.Exp(3 * x)
    assert np.isclose(y.d_n(n=0, val=0.0), 1.0)
    assert np.isclose(y.d_n(n=1, val=0.0), 3.0)
    assert np.isclose(y.d_n(n=3, val=0.0), 27.0)

    y = ad.Log(2 * x)
    assert np.isclose(y.d_n(n=0, val=0.5), 0.0)
    assert np.isclose(y.d_n(n=1, val=0.5), 2.0)
    assert np.isclose(y.d_n(n=3, val=0.5), 2.0 / (0.5**3))
Example #7
0
def test_exp_expression():
    a = ad.Variable('a')
    b = ad.Exp(a)
    assert np.isclose(b.eval({a: 1}), 2.718281828459045)
    assert np.isclose(b.d({a: 1}), 2.718281828459045)