def testSparseRepeatedIndices(self): for dtype in [dtypes.half, dtypes.float32, dtypes.float64]: with self.cached_session(): repeated_index_update_var = variables.Variable([[1.0], [2.0]], dtype=dtype) aggregated_update_var = variables.Variable([[1.0], [2.0]], dtype=dtype) grad_repeated_index = ops.IndexedSlices( constant_op.constant([0.1, 0.1], shape=[2, 1], dtype=dtype), constant_op.constant([1, 1]), constant_op.constant([2, 1])) grad_aggregated = ops.IndexedSlices( constant_op.constant([0.2], shape=[1, 1], dtype=dtype), constant_op.constant([1]), constant_op.constant([2, 1])) repeated_update = adamlrm.AdamLRM().apply_gradients([ (grad_repeated_index, repeated_index_update_var) ]) aggregated_update = adamlrm.AdamLRM().apply_gradients([ (grad_aggregated, aggregated_update_var) ]) variables.global_variables_initializer().run() self.assertAllClose(aggregated_update_var.eval(), self.evaluate(repeated_index_update_var)) for _ in range(3): repeated_update.run() aggregated_update.run() self.assertAllClose( aggregated_update_var.eval(), self.evaluate(repeated_index_update_var))
def testSparseWithAmsgrad(self): # dtypes.half does not work on gpu + eager. for dtype in [dtypes.float32, dtypes.float64]: with self.cached_session(): m0 = np.array([[0.0], [0.0]]) v0 = np.array([[0.0], [0.0]]) v0hat = np.array([[0.0], [0.0]]) indices_np = np.array([1]) indices = constant_op.constant(indices_np, dtype=dtypes.int32) var0_np = np.array([[1.0], [2.0]], dtype=dtype.as_numpy_dtype) repeated_index_update_var = variables.Variable(var0_np, dtype=dtype) aggregated_update_var = variables.Variable(var0_np, dtype=dtype) grads0_np = np.array([[0.2]], dtype=dtype.as_numpy_dtype) grad_repeated_index = ops.IndexedSlices( constant_op.constant([0.1, 0.1], shape=[2, 1], dtype=dtype), constant_op.constant([1, 1]), constant_op.constant([2, 1])) grad_aggregated = ops.IndexedSlices( grads0_np, indices, constant_op.constant([2, 1])) opt_repeated = adamlrm.AdamLRM(amsgrad=True) opt_aggregated = adamlrm.AdamLRM(amsgrad=True) if not context.executing_eagerly(): repeated_update = opt_repeated.apply_gradients([ (grad_repeated_index, repeated_index_update_var) ]) aggregated_update = opt_aggregated.apply_gradients([ (grad_aggregated, aggregated_update_var) ]) self.evaluate(variables.global_variables_initializer()) self.assertAllClose(self.evaluate(aggregated_update_var), self.evaluate(repeated_index_update_var)) for t in range(3): if not context.executing_eagerly(): self.evaluate(repeated_update) self.evaluate(aggregated_update) else: opt_repeated.apply_gradients([ (grad_repeated_index, repeated_index_update_var) ]) opt_aggregated.apply_gradients([ (grad_aggregated, aggregated_update_var) ]) var0_np, m0, v0, v0hat = adam_sparse_update_numpy_amsgrad( var0_np, indices_np, grads0_np, t, m0, v0, v0hat) # Validate updated params self.assertAllCloseAccordingToType( var0_np, self.evaluate(aggregated_update_var)) self.assertAllCloseAccordingToType( self.evaluate(aggregated_update_var), self.evaluate(repeated_index_update_var))
def testConstructAdamLRMWithLR(self): opt = adamlrm.AdamLRM(lr=1.0) opt_2 = adamlrm.AdamLRM(learning_rate=0.1, lr=1.0) opt_3 = adamlrm.AdamLRM(learning_rate=0.1) self.assertIsInstance(opt.lr, variables.Variable) self.assertIsInstance(opt_2.lr, variables.Variable) self.assertIsInstance(opt_3.lr, variables.Variable) self.evaluate(variables.global_variables_initializer()) self.assertAllClose(self.evaluate(opt.lr), (1.0)) self.assertAllClose(self.evaluate(opt_2.lr), (1.0)) self.assertAllClose(self.evaluate(opt_3.lr), (0.1))
def testBasicWithLearningRateDecay(self): for i, dtype in enumerate( [dtypes.half, dtypes.float32, dtypes.float64]): with self.cached_session(use_gpu=True): # Initialize variables for numpy implementation. m0, v0, m1, v1 = 0.0, 0.0, 0.0, 0.0 var0_np = np.array([1.0, 2.0], dtype=dtype.as_numpy_dtype) grads0_np = np.array([0.1, 0.1], dtype=dtype.as_numpy_dtype) var1_np = np.array([3.0, 4.0], dtype=dtype.as_numpy_dtype) grads1_np = np.array([0.01, 0.01], dtype=dtype.as_numpy_dtype) var0 = resource_variable_ops.ResourceVariable(var0_np, name="var0_%d" % i) var1 = resource_variable_ops.ResourceVariable(var1_np, name="var1_%d" % i) grads0 = constant_op.constant(grads0_np) grads1 = constant_op.constant(grads1_np) learning_rate = 0.001 beta_1 = 0.9 beta_2 = 0.999 epsilon = 1e-7 decay = 0.5 opt = adamlrm.AdamLRM(learning_rate=learning_rate, beta_1=beta_1, beta_2=beta_2, epsilon=epsilon, decay=decay, lr_multiplier={'var1': 1e-2}) update = opt.apply_gradients( zip([grads0, grads1], [var0, var1])) self.evaluate(variables.global_variables_initializer()) # Run 3 steps of Adam for t in range(3): self.evaluate(update) lr_np = learning_rate / (1 + decay * t) var0_np, m0, v0 = adam_update_numpy(var0_np, grads0_np, t, m0, v0, lr=lr_np) var1_np, m1, v1 = adam_update_numpy(var1_np, grads1_np, t, m1, v1, lr=1e-2 * lr_np) # Validate updated params self.assertAllCloseAccordingToType(var0_np, self.evaluate(var0)) self.assertAllCloseAccordingToType(var1_np, self.evaluate(var1))
def testSparse(self): for dtype in [dtypes.half, dtypes.float32, dtypes.float64]: with self.cached_session(use_gpu=True): # Initialize variables for numpy implementation. m0, v0, m1, v1 = 0.0, 0.0, 0.0, 0.0 var0_np = np.array([1.0, 1.0, 2.0], dtype=dtype.as_numpy_dtype) grads0_np = np.array([0.1, 0.0, 0.1], dtype=dtype.as_numpy_dtype) var1_np = np.array([3.0, 3.0, 4.0], dtype=dtype.as_numpy_dtype) grads1_np = np.array([0.01, 0.0, 0.01], dtype=dtype.as_numpy_dtype) var0 = resource_variable_ops.ResourceVariable(var0_np, name='var0') var1 = resource_variable_ops.ResourceVariable(var1_np, name='var1') grads0_np_indices = np.array([0, 2], dtype=np.int32) grads0 = ops.IndexedSlices( constant_op.constant(grads0_np[grads0_np_indices]), constant_op.constant(grads0_np_indices), constant_op.constant([3])) grads1_np_indices = np.array([0, 2], dtype=np.int32) grads1 = ops.IndexedSlices( constant_op.constant(grads1_np[grads1_np_indices]), constant_op.constant(grads1_np_indices), constant_op.constant([3])) opt = adamlrm.AdamLRM(lr_multiplier={'var1': 1e-2}) update = opt.apply_gradients( zip([grads0, grads1], [var0, var1])) variables.global_variables_initializer().run() # Fetch params to validate initial values self.assertAllClose([1.0, 1.0, 2.0], self.evaluate(var0)) self.assertAllClose([3.0, 3.0, 4.0], self.evaluate(var1)) beta_1_power, beta_2_power = get_beta_accumulators(opt, dtype) # Run 3 steps of Adam for t in range(3): self.assertAllCloseAccordingToType( 0.9**(t + 1), self.evaluate(beta_1_power)) self.assertAllCloseAccordingToType( 0.999**(t + 1), self.evaluate(beta_2_power)) update.run() var0_np, m0, v0 = adam_update_numpy( var0_np, grads0_np, t, m0, v0) var1_np, m1, v1 = adam_update_numpy(var1_np, grads1_np, t, m1, v1, lr=1e-2 * 0.001) # Validate updated params self.assertAllCloseAccordingToType(var0_np, self.evaluate(var0)) self.assertAllCloseAccordingToType(var1_np, self.evaluate(var1))
def testSetWeightsFromV1AdamLRMWithoutMinimize(self): keras_v1_adam = optimizers.Adam() keras_v2_adam = adamlrm.AdamLRM() keras_v2_adam.set_weights(keras_v1_adam.get_weights()) keras_v1_iteration = keras_v1_adam.iterations keras_v2_iteration = keras_v2_adam.iterations self.evaluate(variables.global_variables_initializer()) self.assertEqual(self.evaluate(keras_v1_iteration), self.evaluate(keras_v2_iteration))
def testSlotsUniqueEager(self): with context.eager_mode(): v1 = resource_variable_ops.ResourceVariable(1.) v2 = resource_variable_ops.ResourceVariable(1.) opt = adamlrm.AdamLRM(1.) opt.minimize(lambda: v1 + v2, var_list=[v1, v2]) # There should be iteration, and two unique slot variables for v1 and v2. self.assertEqual( 5, len(set([v.experimental_ref() for v in opt.variables()]))) self.assertEqual(self.evaluate(opt.variables()[0]), self.evaluate(opt.iterations))
def testSharing(self): for dtype in [dtypes.half, dtypes.float32, dtypes.float64]: with self.cached_session(use_gpu=True): # Initialize variables for numpy implementation. m0, v0, m1, v1 = 0.0, 0.0, 0.0, 0.0 var0_np = np.array([1.0, 2.0], dtype=dtype.as_numpy_dtype) grads0_np = np.array([0.1, 0.1], dtype=dtype.as_numpy_dtype) var1_np = np.array([3.0, 4.0], dtype=dtype.as_numpy_dtype) grads1_np = np.array([0.01, 0.01], dtype=dtype.as_numpy_dtype) var0 = variables.Variable(var0_np, name='var0') var1 = variables.Variable(var1_np, name='var1') grads0 = constant_op.constant(grads0_np) grads1 = constant_op.constant(grads1_np) opt = adamlrm.AdamLRM(lr_multiplier={'var1': 1e-2}) update1 = opt.apply_gradients( zip([grads0, grads1], [var0, var1])) update2 = opt.apply_gradients( zip([grads0, grads1], [var0, var1])) variables.global_variables_initializer().run() beta_1_power, beta_2_power = get_beta_accumulators(opt, dtype) # Fetch params to validate initial values self.assertAllClose([1.0, 2.0], self.evaluate(var0)) self.assertAllClose([3.0, 4.0], self.evaluate(var1)) # Run 3 steps of intertwined Adam1 and Adam2. for t in range(3): self.assertAllCloseAccordingToType( 0.9**(t + 1), self.evaluate(beta_1_power)) self.assertAllCloseAccordingToType( 0.999**(t + 1), self.evaluate(beta_2_power)) if t % 2 == 0: update1.run() else: update2.run() var0_np, m0, v0 = adam_update_numpy( var0_np, grads0_np, t, m0, v0) var1_np, m1, v1 = adam_update_numpy(var1_np, grads1_np, t, m1, v1, lr=1e-2 * 0.001) # Validate updated params self.assertAllCloseAccordingToType(var0_np, self.evaluate(var0)) self.assertAllCloseAccordingToType(var1_np, self.evaluate(var1))
def testSparseDevicePlacement(self): for index_dtype in [dtypes.int32, dtypes.int64]: with self.cached_session(force_gpu=test.is_gpu_available()): # If a GPU is available, tests that all optimizer ops can be placed on # it (i.e. they have GPU kernels). var = variables.Variable([[1.0], [2.0]]) indices = constant_op.constant([0, 1], dtype=index_dtype) g_sum = lambda: math_ops.reduce_sum( array_ops.gather(var, indices)) # pylint: disable=cell-var-from-loop optimizer = adamlrm.AdamLRM(3.0) minimize_op = optimizer.minimize(g_sum, var_list=[var]) variables.global_variables_initializer().run() minimize_op.run()
def testBasicWithAmsgrad(self): for i, dtype in enumerate( [dtypes.half, dtypes.float32, dtypes.float64]): with self.cached_session(use_gpu=True): # Initialize variables for numpy implementation. m0, v0, v0hat, m1, v1, v1hat = 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 var0_np = np.array([1.0, 2.0], dtype=dtype.as_numpy_dtype) grads0_np = np.array([0.1, 0.1], dtype=dtype.as_numpy_dtype) var1_np = np.array([3.0, 4.0], dtype=dtype.as_numpy_dtype) grads1_np = np.array([0.01, 0.01], dtype=dtype.as_numpy_dtype) var0 = resource_variable_ops.ResourceVariable(var0_np, name="var0_%d" % i) var1 = resource_variable_ops.ResourceVariable(var1_np, name="var1_%d" % i) grads0 = constant_op.constant(grads0_np) grads1 = constant_op.constant(grads1_np) opt = adamlrm.AdamLRM(amsgrad=True, lr_multiplier={'var1': 1e-2}) if not context.executing_eagerly(): update = opt.apply_gradients( zip([grads0, grads1], [var0, var1])) self.evaluate(variables.global_variables_initializer()) # Run 3 steps of Adam for t in range(3): beta_1_power, beta_2_power = get_beta_accumulators( opt, dtype) self.assertAllCloseAccordingToType( 0.9**(t + 1), self.evaluate(beta_1_power)) self.assertAllCloseAccordingToType( 0.999**(t + 1), self.evaluate(beta_2_power)) if not context.executing_eagerly(): self.evaluate(update) else: opt.apply_gradients(zip([grads0, grads1], [var0, var1])) var0_np, m0, v0, v0hat = adam_update_numpy_amsgrad( var0_np, grads0_np, t, m0, v0, v0hat) var1_np, m1, v1, v1hat = adam_update_numpy_amsgrad( var1_np, grads1_np, t, m1, v1, v1hat, lr=1e-2 * 0.001) # Validate updated params self.assertAllCloseAccordingToType(var0_np, self.evaluate(var0)) self.assertAllCloseAccordingToType(var1_np, self.evaluate(var1))