Example #1
0
 def __init__(self, mu, sigma, dim, static_data=None):
     super(SizedMvnGaussDataset, self).__init__(dim,
                                                static_data=static_data)
     self.mu = mu
     self.sigma = sigma
     self.data_dist = DiagMvn(mu=[self.mu] * self.dim,
                              sigma=[self.sigma] * self.dim)
     self.num_samples = 1000
     self.data = self.data_dist.get_samples(num_samples=self.num_samples)
Example #2
0
class MvnGaussDataset(ToyDataset):
    def __init__(self, mu, sigma, dim, static_data=None):
        super(MvnGaussDataset, self).__init__(dim, static_data=static_data)
        self.mu = mu
        self.sigma = sigma
        self.data_dist = DiagMvn(mu=[self.mu] * self.dim,
                                 sigma=[self.sigma] * self.dim)

    def gen_batch(self, batch_size):
        return self.data_dist.get_samples(num_samples=batch_size)
Example #3
0
class SizedMvnGaussDataset(ToyDataset):
    def __init__(self, mu, sigma, dim, static_data=None):
        super(SizedMvnGaussDataset, self).__init__(dim,
                                                   static_data=static_data)
        self.mu = mu
        self.sigma = sigma
        self.data_dist = DiagMvn(mu=[self.mu] * self.dim,
                                 sigma=[self.sigma] * self.dim)
        self.num_samples = 1000
        self.data = self.data_dist.get_samples(num_samples=self.num_samples)

    def gen_batch(self, batch_size):
        inds = np.random.choice(np.arange(self.num_samples), size=batch_size)
        return self.data[inds, :].reshape((batch_size, ) + self.data.shape[1:])
Example #4
0
def build_graph(cmd_args, db, energy_func, flow):
    ph_real_data = tf.placeholder(tf.float32, shape=(None, db.dim))
    ph_z0 = tf.placeholder(tf.float32, shape=(None, db.dim))

    init_dist = DiagMvn(mu=[0.0] * db.dim, sigma=[1.0] * db.dim)

    gen_loss, train_gen = get_gen_loss(cmd_args, ph_real_data, ph_z0, flow,
                                       energy_func, init_dist)
    disc_loss, train_disc = get_disc_loss(cmd_args, ph_real_data, ph_z0, flow,
                                          energy_func, init_dist)
    ema = tf.train.ExponentialMovingAverage(decay=cmd_args.ema_decay)
    with tf.control_dependencies([train_disc]):
        vars = tf.trainable_variables(scope='energy_func')
        disc_train_op = ema.apply(vars)

    train_disc = disc_train_op
    return ph_real_data, ph_z0, init_dist, gen_loss, train_gen, disc_loss, train_disc, ema
Example #5
0
    print('plot size:', plt_size)
    # plot true data
    data_gen = db.data_gen(batch_size=1000, auto_reset=False)
    true_data = next(data_gen)
    output_path = os.path.join(cmd_args.save_dir, 'ground_truth.pdf')
    plot_samples(true_data, output_path)

    gamma = get_gamma(true_data, cmd_args.mmd_bd)
    eval_metric = lambda x: MMD(true_data, x, gamma)

    graph_list = build_graph(cmd_args, db, energy_func, flow)
    ema = graph_list[-1]
    ema_energy_func = build_ema_f(cmd_args, db, ema)

    # computation graph for getting samples
    init_dist = DiagMvn(mu=[0.0] * db.dim, sigma=[1.0] * db.dim)
    ph_z0 = tf.placeholder(tf.float32, shape=(None, db.dim))
    log_pz0 = init_dist.get_log_pdf(ph_z0)
    x_samples, _ = flow(ph_z0, log_pz0)

    # computation graph for getting pdf

    factors = [0.01, 0.05, 0.1, 0.2, 0.5, 1, 5]
    pdf_dict = {}
    ph_x = tf.placeholder(tf.float32, shape=(None, db.dim))
    x_energy = tf.reshape(-energy_func(ph_x), shape=[-1])
    for key in factors:
        pdf_dict[key] = tf.nn.softmax(key * x_energy)

    x_energy_ema = tf.reshape(-ema_energy_func(ph_x), shape=[-1])
    pdf_ema_dict = {}
Example #6
0
 def __init__(self, mu, sigma, dim, static_data=None):
     super(MvnGaussDataset, self).__init__(dim, static_data=static_data)
     self.mu = mu
     self.sigma = sigma
     self.data_dist = DiagMvn(mu=[self.mu] * self.dim,
                              sigma=[self.sigma] * self.dim)
Example #7
0
from ade.common.distributions import DiagMvn
import ade.common.mcmc_net as mcmc_net


if __name__ == '__main__':
    random.seed(cmd_args.seed)
    np.random.seed(cmd_args.seed)
    tf.random.set_random_seed(cmd_args.seed)

    true_mean = -1.0
    true_std = 0.1

    with tf.variable_scope('energy_func'):
        energy_func = GaussianEnergy(dim=cmd_args.gauss_dim, init_mu=true_mean, init_sigma=true_std)

    with tf.variable_scope('generator'):
        mcmc = mcmc_net.HMCNet(cmd_args, dim=cmd_args.gauss_dim)
    
    ph_z0 = tf.placeholder(tf.float32, shape=(1000, cmd_args.gauss_dim))
    zt = mcmc(energy_func, ph_z0)
    init_dist = DiagMvn(mu=[0.0] * cmd_args.gauss_dim,
                        sigma=[1.0] * cmd_args.gauss_dim)

    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())

        z0 = init_dist.get_samples(num_samples=1000)
        z_samples = sess.run(zt, feed_dict={ph_z0: z0})

        print(np.mean(z_samples, axis=0))
        print(np.std(z_samples, axis=0))