Example #1
0
CFDSolver.setAeroProblem(ap)
cfdPoints = CFDSolver.getInitialSurfaceCoordinates(CFDSolver.allWallsGroup)

# print "cfdPoints", cfdPoints
# exit()

if 0:

    setVolumeGrid(structU, ntimeintervalsspectral, b, xRot, CFDSolver,
                  cfdPoints, complex_flag, False)
    CFDSolver(ap)
    setVolumeGrid(structU, ntimeintervalsspectral, b, xRot, CFDSolver,
                  cfdPoints, complex_flag, True)

    index_r = 3881 - 1  # rho
    residual1 = CFDSolver.getResidual(ap)

    print("res rho", residual1[index_r])
    print("res ivx", residual1[index_r + 1])
    print("res ivy", residual1[index_r + 2])
    print("res ivz", residual1[index_r + 3])

if 1:

    setVolumeGrid(structU, ntimeintervalsspectral, b, xRot, CFDSolver,
                  cfdPoints, complex_flag, False)
    CFDSolver(ap)

# surgery room 1
# local section
# inviscidcentralflux:
Example #2
0
class TestCmplxStep(reg_test_classes.CmplxRegTest):
    """
    Tests that sensitives calculated from solving an adjoint are correct.
    and jacobian vector products are accurate.

    based on old regression tests_cs 12, and 14
    """

    N_PROCS = 2

    h = 1e-40

    def setUp(self):
        if not hasattr(self, "name"):
            # return immediately when the setup method is being called on the based class and NOT the
            # classes created using parametrized
            # this will happen when training, but will hopefully be fixed down the line
            return
        super().setUp()

        options = copy.copy(adflowDefOpts)
        options["outputdirectory"] = os.path.join(baseDir, options["outputdirectory"])
        options.update(self.options)

        self.ffdFile = os.path.join(baseDir, "../../input_files/mdo_tutorial_ffd.fmt")

        mesh_options = copy.copy(IDWarpDefOpts)
        mesh_options.update({"gridFile": options["gridfile"]})

        self.ap = copy.deepcopy(self.aero_prob)

        # Setup aeroproblem
        self.ap.evalFuncs = self.evalFuncs

        # add the default dvs to the problem
        for dv in defaultAeroDVs:
            self.ap.addDV(dv)

        self.CFDSolver = ADFLOW_C(options=options, debug=True)

        self.CFDSolver.setMesh(USMesh_C(options=mesh_options))
        self.CFDSolver.setDVGeo(setDVGeo(self.ffdFile, cmplx=True))

        # propagates the values from the restart file throughout the code
        self.CFDSolver.getResidual(self.ap)

    def cmplx_test_aero_dvs(self):
        if not hasattr(self, "name"):
            # return immediately when the setup method is being called on the based class and NOT the
            # classes created using parametrized
            # this will happen when training, but will hopefully be fixed down the line
            return

        for dv in ["alpha", "mach"]:  # defaultAeroDVs:

            funcsSens = defaultdict(lambda: {})
            setattr(self.ap, dv, getattr(self.ap, dv) + self.h * 1j)

            self.CFDSolver.resetFlow(self.ap)
            self.CFDSolver(self.ap, writeSolution=False)
            self.assert_solution_failure()

            funcs = {}
            self.CFDSolver.evalFunctions(self.ap, funcs)
            setattr(self.ap, dv, getattr(self.ap, dv) - self.h * 1j)

            for f in self.ap.evalFuncs:
                key = self.ap.name + "_" + f
                dv_key = dv + "_" + self.ap.name
                funcsSens[key][dv_key] = numpy.imag(funcs[key]) / self.h

        if MPI.COMM_WORLD.rank == 0:
            print("====================================")
            print(self.ap.alpha)
            print(self.ap.mach)
            print(self.name, funcsSens)
            print("====================================")

        self.handler.root_add_dict("Eval Functions Sens:", funcsSens, rtol=1e-8, atol=5e-10)

    def cmplx_test_geom_dvs(self):
        if not hasattr(self, "name"):
            # return immediately when the setup method is being called on the based class and NOT the
            # classes created using parametrized
            # this will happen when training, but will hopefully be fixed down the line
            return

        # redo the setup for a cmplx test
        funcsSens = defaultdict(lambda: {})

        xRef = {"twist": [0.0] * 6, "span": [0.0], "shape": numpy.zeros(72, dtype="D")}

        for dv in ["span", "twist", "shape"]:

            xRef[dv][0] += self.h * 1j

            self.CFDSolver.resetFlow(self.ap)
            self.CFDSolver.DVGeo.setDesignVars(xRef)
            self.CFDSolver(self.ap, writeSolution=False)
            self.assert_solution_failure()

            funcs = {}
            self.CFDSolver.evalFunctions(self.ap, funcs)

            xRef[dv][0] -= self.h * 1j

            for f in self.ap.evalFuncs:
                key = self.ap.name + "_" + f
                dv_key = dv
                funcsSens[key][dv_key] = numpy.imag(funcs[key]) / self.h

                err_msg = "Failed value for: {}".format(key + " " + dv_key)

                ref_val = self.handler.db["Eval Functions Sens:"][key][dv_key]
                ref_val = ref_val.flatten()[0]

                numpy.testing.assert_allclose(funcsSens[key][dv_key], ref_val, atol=5e-9, rtol=5e-9, err_msg=err_msg)

        if MPI.COMM_WORLD.rank == 0:
            print("====================================")
            print(self.name, funcsSens)
            print("====================================")
Example #3
0
class TestJacVecFwdCS(reg_test_classes.CmplxRegTest):
    """
    Tests jacobian vector products against CS.

    """

    N_PROCS = 2

    h = 1e-40

    def setUp(self):
        if not hasattr(self, "name"):
            # return immediately when the setup method is being called on the based class and NOT the
            # classes created using parametrized
            # this will happen when training, but will hopefully be fixed down the line
            return
        super().setUp()

        options = copy.copy(adflowDefOpts)
        options["outputdirectory"] = os.path.join(baseDir,
                                                  options["outputdirectory"])
        options.update(self.options)

        self.ap = copy.deepcopy(self.aero_prob)

        # Setup aeroproblem
        self.ap = copy.deepcopy(self.aero_prob)
        # add the default dvs to the problem
        for dv in defaultAeroDVs:
            self.ap.addDV(dv)

        # add the default dvs to the problem
        for dv in defaultAeroDVs:
            self.ap.addDV(dv)

        self.CFDSolver = ADFLOW_C(options=options, debug=True)

        # propagates the values from the restart file throughout the code
        self.CFDSolver.getResidual(self.ap)

    # ------------------- Derivative routine checks ----------------------------
    def cmplx_test_wDot(self):

        if not hasattr(self, "name"):
            # return immediately when the setup method is being called on the based class and NOT the
            # classes created using parametrized
            # this will happen when training, but will hopefully be fixed down the line
            return

        # perturb each input and check that the outputs match the FD to with in reason
        wDot = self.CFDSolver.getStatePerturbation(314)

        resDot_CS, funcsDot_CS, fDot_CS = self.CFDSolver.computeJacobianVectorProductFwd(
            wDot=wDot,
            residualDeriv=True,
            funcDeriv=True,
            fDeriv=True,
            mode="CS",
            h=self.h)

        rtol, atol = getTol(tol=1e-9)

        self.handler.root_print("||dR/dw * wDot||")
        self.handler.par_add_norm("||dR/dw * wDot||",
                                  resDot_CS,
                                  rtol=rtol,
                                  atol=atol)

        self.handler.root_print("dFuncs/dw * wDot")
        self.handler.root_add_dict("dFuncs/dw * wDot",
                                   funcsDot_CS,
                                   rtol=rtol,
                                   atol=atol)

        self.handler.root_print("||dF/dw * wDot||")
        self.handler.par_add_norm("||dF/dw * wDot||",
                                  fDot_CS,
                                  rtol=rtol,
                                  atol=atol)

    def cmplx_test_xVDot(self):
        if not hasattr(self, "name"):
            # return immediately when the setup method is being called on the based class and NOT the
            # classes created using parametrized
            # this will happen when training, but will hopefully be fixed down the line
            return

        # perturb each input and check that the outputs match the FD to with in reason
        xVDot = self.CFDSolver.getSpatialPerturbation(314)

        rtol, atol = getTol(tol=1e-10)

        resDot_cs, funcsDot_cs, fDot_cs = self.CFDSolver.computeJacobianVectorProductFwd(
            xVDot=xVDot,
            residualDeriv=True,
            funcDeriv=True,
            fDeriv=True,
            mode="CS",
            h=self.h)

        self.handler.root_print("||dR/dXv * xVDot||")
        self.handler.par_add_norm("||dR/dXv * xVDot||",
                                  resDot_cs,
                                  rtol=rtol,
                                  atol=atol)

        # These can be finiky sometimes so a bigger tolerance.
        self.handler.root_print("dFuncs/dXv * xVDot")
        self.handler.root_add_dict("dFuncs/dXv * xVDot",
                                   funcsDot_cs,
                                   rtol=rtol * 10,
                                   atol=atol * 10)

        self.handler.root_print("||dF/dXv * xVDot||")
        self.handler.par_add_norm("||dF/dXv * xVDot||",
                                  fDot_cs,
                                  rtol=rtol,
                                  atol=atol)

    def cmplx_test_xDvDot(self):
        if not hasattr(self, "name"):
            # return immediately when the setup method is being called on the based class and NOT the
            # classes created using parametrized
            # this will happen when training, but will hopefully be fixed down the line
            return
        rtol, atol = getTol(tol=1e-10)

        # perturb each input and check that the outputs match the FD to with in reason
        for aeroDV in self.ap.DVs.values():
            key = aeroDV.key
            self.handler.root_print("  -> %s" % key)
            xDvDot = {key: 1.0}

            resDot_cs, funcsDot_cs, fDot_cs = self.CFDSolver.computeJacobianVectorProductFwd(
                xDvDot=xDvDot,
                residualDeriv=True,
                funcDeriv=True,
                fDeriv=True,
                mode="CS",
                h=self.h)

            self.handler.root_print("||dR/d%s||" % key)
            self.handler.par_add_norm("||dR/d%s||" % key,
                                      resDot_cs,
                                      rtol=rtol,
                                      atol=atol)

            self.handler.root_print("dFuncs/d%s" % key)
            self.handler.root_add_dict("dFuncs/d%s" % key,
                                       funcsDot_cs,
                                       rtol=rtol,
                                       atol=atol)

            self.handler.root_print("||dF/d%s||" % key)
            self.handler.par_add_norm("||dF/d%s||" % key,
                                      fDot_cs,
                                      rtol=rtol,
                                      atol=atol)