Example #1
0
config = "config_mpi.xml"
if len(sys.argv) > 1:
    config = sys.argv[1]

ad.init(config, comm)
fd = ad.open("temperature", "adios_test_mpi.bp", "w", comm)

NX = 10
groupsize =  4 + 4 + 4 + 8 * 1 * NX
t = np.array(range(NX), dtype=np.float64) + rank*NX
ad.set_group_size(fd, groupsize)
ad.write_int(fd, "NX", NX)
ad.write_int(fd, "rank", rank)
ad.write_int(fd, "size", size)
ad.write(fd, "temperature", t)
ad.close(fd)

ad.finalize()

## Reading
if rank == 0:
    print "\n>>> Reading ...\n"

    f = ad.file("adios_test_mpi.bp", comm=MPI.COMM_SELF)
    f.printself()

    v = f.var['temperature']
    v.printself()

    val = v.read()
    print val
Example #2
0
def sosToADIOS():
    global SOS
    global config
    parseConfigFile()
    SOS = SSOS()

    printf("Initializing SOS: ...\b\b\b")
    SOS.init()
    printf("OK!\n")

    #####
    #
    # Get the maximum simulation cycle found in the database.
    #
    # NOTE: The cycleFieldName variable should match what is being used
    #       either by your application or SOSflow. If you are not using
    #       an explicit cycle value, you can use SOSflow's internal
    #       field named "frame" that is updated every time SOS_publish(...)
    #       is called. As long as you are publishing to SOS at the end
    #       of major program steps, this will give you what you want.
    #
    # NOTE: For online queries, if you want to ensure that your most
    #       current projection represents a complete set of values,
    #       and you're investigating a block-synchronous code, you can
    #       grab the current maximum and subtract one.
    #
    #
    num_rows = 0
    # Get at least one active aggregator
    lookupAggregators()

    g = None
    if config["output_adios"]:
        # ADIOS file output
        ad.init_noxml()
        g = ad.declare_group("TAU_metrics", "", ad.FLAG.YES)
        ad.define_var(g, "program_count", "", ad.DATATYPE.unsigned_integer, "",
                      "", "")
        ad.define_var(g, "comm_rank_count", "", ad.DATATYPE.unsigned_integer,
                      "", "", "")
        ad.define_var(g, "thread_count", "", ad.DATATYPE.unsigned_integer, "",
                      "", "")
        ad.define_var(g, "metric_count", "", ad.DATATYPE.unsigned_integer, "",
                      "", "")
        ad.define_var(g, "timer_count", "", ad.DATATYPE.unsigned_integer, "",
                      "", "")
        ad.define_var(g, "timer_value_count", "", ad.DATATYPE.unsigned_integer,
                      "", "", "")
        ad.define_var(g, "timer_values", "", ad.DATATYPE.unsigned_integer,
                      "timer_value_count,6", "timer_value_count,6", "0,0")
        ad.define_var(g, "counter_count", "", ad.DATATYPE.unsigned_integer, "",
                      "", "")
        ad.define_var(g, "counter_value_count", "",
                      ad.DATATYPE.unsigned_integer, "", "", "")
        ad.define_var(g, "counter_values", "", ad.DATATYPE.double,
                      "counter_value_count,5", "counter_value_count,5", "0,0")
        print "using ADIOS method:", str(config["adios_method"])
        ad.select_method(g, str(config["adios_method"]), "verbose=3", "")

    # wait for a frame to show up. Frame 0 (and maybe 1) are TAU metadata.
    # The rest should be just timers.
    next_frame = 0
    # first iteration, we are writing the file. after that, appending.
    adios_mode = "w"

    # Keep running until there are no more frames to wait for.
    # At runtime, this is a moving target, since next_frame gets updated.
    while config["aggregators"][
            "runtime"] or next_frame < config["aggregators"]["maxframe"]:
        # wait for the next batch of frames
        timeout = waitForServer(SOS, next_frame)
        if timeout:
            break
        print "Processing frame", next_frame
        start = time.time()
        fd = ad.open("TAU_metrics", "tau-metrics.bp", adios_mode)
        writeMetaData(SOS, next_frame, g, fd)
        writeTimerData(SOS, next_frame, g, fd)
        writeCounterData(SOS, next_frame, g, fd)
        ad.close(fd)
        # future iterations are appending, not writing
        adios_mode = "a"
        # clean up the database for long runs
        cleanDB(SOS, next_frame)
        next_frame = next_frame + 1
        end = time.time()
        print "loop time:", str(end - start)

    # finalize adios
    if config["output_adios"]:
        ad.finalize()

    # finalize SOS
    SOS.finalize()

    print "   ...DONE!"
    return
def generateADIOSFile(SOS, cycleFieldName, simCycle, lastX, lastY, lastZ,
                      stride, mintime, maxtime):
    global previous_attr
    global cached_results_dim
    global cachedName
    global config
    global last_time
    global last_fp_ops
    global last_rss
    global adios_mode

    # Get the frame-specific data...

    # because we are querying different servers, the data has the potential to
    # arrive out-of-order (prog_name, comm_rank). So after each query, sort
    # the results into a dictionary of dictionaries.
    prog_names = {}

    # do the memory first - HWM

    start = time.time()
    sqlValsToColByRank = "select coalesce(value,0.0), prog_name, comm_rank from viewCombined where value_name = '" + str(
        config["events"]["counters"][0]) + "' and frame = " + str(
            simCycle) + ";"
    results, col_names = queryAllAggregators(sqlValsToColByRank)
    end = time.time()
    print(end - start), "seconds for frame query"

    for r in results:
        value = float(r[0])
        prog_name = str(r[1])
        comm_rank = int(r[2])
        if prog_name not in prog_names:
            prog_names[prog_name] = {}
        if comm_rank not in prog_names[prog_name]:
            prog_names[prog_name][comm_rank] = []
        prog_names[prog_name][comm_rank].append(value)

    # do the memory first - RSS

    start = time.time()
    current_rss = {}
    sqlValsToColByRank = "select coalesce(value,0.0), prog_name, comm_rank from viewCombined where value_name = '" + str(
        config["events"]["counters"][1]) + "' and frame = " + str(
            simCycle) + ";"
    results, col_names = queryAllAggregators(sqlValsToColByRank)
    end = time.time()
    print(end - start), "seconds for frame query"
    index = -1

    for r in results:
        index = index + 1
        value = float(r[0])
        # change the mean value to a total value and save it
        current_rss[index] = value * simCycle
        # convert the running average to the most recent measurement
        if index in last_rss:
            value = current_rss[index] - last_rss[index]
        prog_name = str(r[1])
        comm_rank = int(r[2])
        if prog_name not in prog_names:
            prog_names[prog_name] = {}
        if comm_rank not in prog_names[prog_name]:
            prog_names[prog_name][comm_rank] = []
        prog_names[prog_name][comm_rank].append(value)
    last_rss = current_rss

    # do the timer PAPI metric next

    start = time.time()
    # Make sure we sort by prog_name, comm_rank!
    sqlValsToColByRank = "select coalesce(value,0.0), prog_name, comm_rank from viewCombined where value_name = '" + str(
        config["events"]["timers"][0]) + "' and frame = " + str(simCycle) + ";"
    results, col_names = queryAllAggregators(sqlValsToColByRank)
    end = time.time()
    print(end - start), "seconds for frame query"

    for r in results:
        value = float(r[0])
        prog_name = str(r[1])
        comm_rank = int(r[2])
        if prog_name not in prog_names:
            prog_names[prog_name] = {}
        if comm_rank not in prog_names[prog_name]:
            prog_names[prog_name][comm_rank] = []
        prog_names[prog_name][comm_rank].append(value)

    # do the timer time metric next

    start = time.time()
    sqlValsToColByRank = "select coalesce(value,0.0), prog_name, comm_rank from viewCombined where value_name = '" + str(
        config["events"]["timers"][1]) + "' and frame = " + str(simCycle) + ";"
    results, col_names = queryAllAggregators(sqlValsToColByRank)
    end = time.time()
    print(end - start), "seconds for frame query"

    for r in results:
        value = float(r[0])
        prog_name = str(r[1])
        comm_rank = int(r[2])
        if prog_name not in prog_names:
            prog_names[prog_name] = {}
        if comm_rank not in prog_names[prog_name]:
            prog_names[prog_name][comm_rank] = []
        prog_names[prog_name][comm_rank].append(value)

    # now that the data is queried and sorted, write it out to the file

    # initialize the ADIOS data
    groupsize = 0
    # How many MPI ranks in each program?
    for prog_name in prog_names:
        groupsize = groupsize + len(prog_names[prog_name])
    program_count = len(prog_names)
    adios_process_index = np.array(range(groupsize), dtype=np.uint32)
    adios_memdata_hwm = np.array(range(groupsize), dtype=np.float64)
    adios_memdata_rss = np.array(range(groupsize), dtype=np.float64)
    adios_flops1 = np.array(range(groupsize), dtype=np.float64)
    adios_flops2 = np.array(range(groupsize), dtype=np.float64)
    adios_program = np.array(range(groupsize), dtype=np.uint32)
    adios_program_name = np.array(range(program_count), dtype=np.chararray)
    adios_mpi_index = np.array(range(groupsize), dtype=np.uint32)

    cyclestr = str(simCycle)
    cyclestr = cyclestr.rjust(5, '0')
    filename = "performance.metrics." + cyclestr + ".txt"
    # regular text file
    if config["output_text"]:
        flops_out = open(config["outputdir"] + "/" + filename, 'w')
        flops_out.write(
            "Process Index, Memory HWM, Memory RSS, Total FLOPS, Latest FLOPS, Program Name, Program Index, MPI Rank\n"
        )
    s1 = config["events"]["timer_scaling"][0]
    s2 = config["events"]["timer_scaling"][1]
    index = -1
    prog_index = -1
    current_time = {}
    current_fp_ops = {}
    for prog_name in prog_names:
        prog_index = prog_index + 1
        adios_program_name[prog_index] = prog_name
        for comm_rank in prog_names[prog_name]:
            index = index + 1
            print prog_name, comm_rank, index, current_fp_ops, prog_names
            current_fp_ops[index] = prog_names[prog_name][comm_rank][2] * s1
            current_time[index] = prog_names[prog_name][comm_rank][3] * s2
            flops_to_date = current_fp_ops[index] / current_time[index]
            if len(last_fp_ops) > 0:
                tmp = (current_fp_ops[index] - last_fp_ops[index])
                tmp2 = (current_time[index] - last_time[index])
                if tmp2 > 0.0:
                    # compute flops from lastest timestep
                    flops_in_last_timestep = tmp / tmp2
                else:
                    if last_time[index] > 0.0:
                        # compute flops from previous timestep
                        flops_in_last_timestep = last_fp_ops[
                            index] / last_time[index]
                    else:
                        # something weird is happening...
                        flops_in_last_timestep = 0.0
            else:
                # compute flops from first timestep
                flops_in_last_timestep = flops_to_date
            if config["output_text"]:
                # write the sorted data to the file
                flops_out.write(str(index) + ", ")
                flops_out.write(
                    str(prog_names[prog_name][comm_rank][0]) + ", ")
                flops_out.write(
                    str(prog_names[prog_name][comm_rank][1]) + ", ")
                flops_out.write(str(flops_to_date) + ", ")
                flops_out.write(str(flops_in_last_timestep) + ", ")
                flops_out.write(prog_name + ", ")
                flops_out.write(str(prog_index) + ", ")
                flops_out.write(str(comm_rank) + "\n")
            if config["output_adios"]:
                adios_process_index[index] = index
                adios_memdata_hwm[index] = prog_names[prog_name][comm_rank][0]
                adios_memdata_rss[index] = prog_names[prog_name][comm_rank][1]
                adios_flops1[index] = flops_to_date
                adios_flops2[index] = flops_in_last_timestep
                adios_program[index] = prog_index
                adios_mpi_index[index] = comm_rank

    if config["output_text"]:
        flops_out.close()
        stream_file = "performance.metrics.txt"
        stream_out = open(config["outputdir"] + "/" + stream_file, 'w')
        stream_out.write(filename + "\n")
        stream_out.close()
    last_time = current_time
    last_fp_ops = current_fp_ops

    if config["output_adios"]:
        # write the adios
        fd = ad.open("TAU_metrics", "tau-metrics.bp", adios_mode)
        ad.write_int(fd, "process_count", groupsize)
        ad.write_int(fd, "program_count", program_count)
        ad.write(fd, "process_index", adios_process_index)
        ad.write(fd, "memory_HWM", adios_memdata_hwm)
        ad.write(fd, "memory_RSS", adios_memdata_rss)
        ad.write(fd, "total_FLOPS", adios_flops1)
        ad.write(fd, "latest_FLOPS", adios_flops2)
        #ad.write(fd, "program_name", adios_program_name)
        ad.write(fd, "program_index", adios_program)
        ad.write(fd, "MPI_rank", adios_mpi_index)
        ad.close(fd)
        #fd.close()
        # future iterations are appending, not writing
        adios_mode = "a"

    return filename
Example #4
0
def sosToADIOS():
    global SOS
    global config
    global validation
    parseConfigFile()
    SOS = SSOS()

    printf("Initializing SOS: ...\b\b\b")
    SOS.init()
    printf("OK!\n")

    #####
    #
    # Get the maximum simulation cycle found in the database.
    #
    # NOTE: The cycleFieldName variable should match what is being used
    #       either by your application or SOSflow. If you are not using
    #       an explicit cycle value, you can use SOSflow's internal
    #       field named "frame" that is updated every time SOS_publish(...)
    #       is called. As long as you are publishing to SOS at the end
    #       of major program steps, this will give you what you want.
    #
    # NOTE: For online queries, if you want to ensure that your most
    #       current projection represents a complete set of values,
    #       and you're investigating a block-synchronous code, you can
    #       grab the current maximum and subtract one.
    #
    #
    num_rows = 0
    # Get at least one active aggregator
    lookupAggregators()

    g = None
    if config["output_adios"]:
        # ADIOS file output
        ad.init_noxml()
        g = ad.declare_group("TAU_metrics", "", ad.FLAG.YES)
        ad.define_var(g, "program_count", "", ad.DATATYPE.unsigned_integer, "",
                      "", "")
        ad.define_var(g, "comm_rank_count", "", ad.DATATYPE.unsigned_integer,
                      "", "", "")
        ad.define_var(g, "thread_count", "", ad.DATATYPE.unsigned_integer, "",
                      "", "")
        ad.define_var(g, "event_type_count", "", ad.DATATYPE.unsigned_integer,
                      "", "", "")
        ad.define_var(g, "timer_count", "", ad.DATATYPE.unsigned_integer, "",
                      "", "")
        ad.define_var(g, "timer_event_count", "", ad.DATATYPE.unsigned_integer,
                      "", "", "")
        ad.define_var(g, "event_timestamps", "", ad.DATATYPE.unsigned_long,
                      "timer_event_count,6", "timer_event_count,6", "0,0")
        ad.define_var(g, "counter_count", "", ad.DATATYPE.unsigned_integer, "",
                      "", "")
        ad.define_var(g, "counter_event_count", "",
                      ad.DATATYPE.unsigned_integer, "", "", "")
        ad.define_var(g, "counter_values", "", ad.DATATYPE.unsigned_long,
                      "counter_event_count,6", "counter_event_count,6", "0,0")
        ad.define_var(g, "comm_count", "", ad.DATATYPE.unsigned_integer, "",
                      "", "")
        ad.define_var(g, "comm_timestamps", "", ad.DATATYPE.unsigned_long,
                      "comm_count,8", "comm_count,8", "0,0")
        print("using ADIOS method:", str(config["adios_method"]))
        ad.select_method(g, str(config["adios_method"]), "verbose=3", "")

    # wait for a frame to show up. Frame 0 (and maybe 1) are TAU metadata.
    # The rest should be just timers.
    next_frame = 0
    # first iteration, we are writing the file. after that, appending.
    adios_mode = "w"

    waitForServer(SOS, 0)
    buildColumnMap(SOS)

    # Keep running until there are no more frames to wait for.
    # At runtime, this is a moving target, since next_frame gets updated.
    done = False
    total_count = 0
    while (not done or total_count > 0) and (
            config["aggregators"]["runtime"]
            or next_frame < config["aggregators"]["maxframe"]):
        # wait for the next batch of frames
        if not done:
            timeout = waitForServer(SOS, next_frame + 1)
        if timeout:
            done = True
        #if len(column_map) == 0:
        #    buildColumnMap(SOS)
        print("Processing frame", next_frame)
        start = time.time()
        fd = ad.open("TAU_metrics", "tau-metrics.bp", adios_mode)
        meta_count = writeMetaData(SOS, next_frame, g, fd)
        timer_count = writeTimerData(SOS, next_frame, g, fd)
        total_count = meta_count + timer_count
        ad.close(fd)
        # future iterations are appending, not writing
        adios_mode = "a"
        print("Processed", total_count, "rows")
        if total_count == 0 and done:
            break
        next_frame = next_frame + 1
        end = time.time()
        print("loop time:", str(end - start))

    # finalize adios
    if config["output_adios"]:
        ad.finalize()

    # finalize SOS
    SOS.finalize()

    for p in validation:
        for r in validation[p]:
            for t in validation[p][r]:
                if len(validation[p][r][t]) != 0:
                    print("VALIDATION ERROR!", p, r, t, validation[p][r][t],
                          "was not exited")
    print("   ...DONE!")
    return
Example #5
0
config = "config_mpi.xml"
if len(sys.argv) > 1:
    config = sys.argv[1]

ad.init(config, comm)
fd = ad.open("temperature", "adios_test_mpi.bp", "w", comm)

NX = 10
groupsize =  4 + 4 + 4 + 8 * 1 * NX
t = np.array(range(NX), dtype=np.float64) + rank*NX
ad.set_group_size(fd, groupsize)
ad.write_int(fd, "NX", NX)
ad.write_int(fd, "rank", rank)
ad.write_int(fd, "size", size)
ad.write(fd, "temperature", t)
ad.close(fd)

ad.finalize()

## Reading
if rank == 0:
    print "\n>>> Reading ...\n"

    f = ad.file("adios_test_mpi.bp", comm=MPI.COMM_SELF)
    f.printself()

    v = f.vars['temperature']
    v.printself()

    val = v.read()
    print val