def run(self): """Runs the task. Parameters ---------- None Returns ------- None """ self._summary = {} dt = utils.Dtime("CubeStats") #maxvrms = 2.0 # maximum variation in rms allowed (hardcoded for now) #maxvrms = -1.0 # turn maximum variation in rms allowed off maxvrms = self.getkey("maxvrms") psample = -1 psample = self.getkey("psample") # BDP's used : # b1 = input BDP # b2 = output BDP b1 = self._bdp_in[0] fin = b1.getimagefile(bt.CASA) bdp_name = self.mkext(fin,'cst') b2 = CubeStats_BDP(bdp_name) self.addoutput(b2) # PeakPointPlot use_ppp = self.getkey("ppp") # peakstats: not enabled for mortal users yet # peakstats = (psample=1, numsigma=4, minchan=3, maxgap=2, peakfit=False) pnumsigma = 4 minchan = 3 maxgap = 2 peakfit = False # True will enable a true gaussian fit # numsigma: adding all signal > numsigma ; not user enabled; for peaksum. numsigma = -1.0 numsigma = 3.0 # grab the new robust statistics. If this is used, 'rms' will be the RMS, # else we will use RMS = 1.4826*MAD (MAD does a decent job on outliers as well) # and was the only method available before CASA 4.4 when robust was implemented robust = self.getkey("robust") rargs = casautil.parse_robust(robust) nrargs = len(rargs) if nrargs == 0: sumrargs = "medabsdevmed" # for the summary, indicate the default robust else: sumrargs = str(rargs) self._summary["rmsmethd"] = SummaryEntry([sumrargs,fin],"CubeStats_AT",self.id(True)) #@todo think about using this instead of putting 'fin' in all the SummaryEntry #self._summary["casaimage"] = SummaryEntry(fin,"CubeStats_AT",self.id(True)) # extra CASA call to get the freq's in GHz, as these are not in imstat1{} # @todo what if the coordinates are not in FREQ ? # Note: CAS-7648 bug on 3D cubes if False: # csys method ia.open(self.dir(fin)) csys = ia.coordsys() spec_axis = csys.findaxisbyname("spectral") # ieck, we need a valid position, or else it will come back and "Exception: All selected pixels are masked" #freqs = ia.getprofile(spec_axis, region=rg.box([0,0],[0,0]))['coords']/1e9 #freqs = ia.getprofile(spec_axis)['coords']/1e9 freqs = ia.getprofile(spec_axis,unit="GHz")['coords'] dt.tag("getprofile") else: # old imval method #imval0 = casa.imval(self.dir(fin),box='0,0,0,0') # this fails on 3D imval0 = casa.imval(self.dir(fin)) freqs = imval0['coords'].transpose()[2]/1e9 dt.tag("imval") nchan = len(freqs) chans = np.arange(nchan) # call CASA to get what we want # imstat0 is the whole cube, imstat1 the plane based statistics # warning: certain robust stats (**rargs) on the whole cube are going to be very slow dt.tag("start") imstat0 = casa.imstat(self.dir(fin), logfile=self.dir('imstat0.logfile'),append=False,**rargs) dt.tag("imstat0") imstat1 = casa.imstat(self.dir(fin),axes=[0,1],logfile=self.dir('imstat1.logfile'),append=False,**rargs) dt.tag("imstat1") # imm = casa.immoments(self.dir(fin),axis='spec', moments=8, outfile=self.dir('ppp.im')) if nrargs > 0: # need to get the peaks without rubust imstat10 = casa.imstat(self.dir(fin), logfile=self.dir('imstat0.logfile'),append=True) dt.tag("imstat10") imstat11 = casa.imstat(self.dir(fin),axes=[0,1],logfile=self.dir('imstat1.logfile'),append=True) dt.tag("imstat11") # grab the relevant plane-based things from imstat1 if nrargs == 0: mean = imstat1["mean"] sigma = imstat1["medabsdevmed"]*1.4826 # see also: astropy.stats.median_absolute_deviation() peakval = imstat1["max"] minval = imstat1["min"] else: mean = imstat1["mean"] sigma = imstat1["rms"] peakval = imstat11["max"] minval = imstat11["min"] if True: # work around a bug in imstat(axes=[0,1]) for last channel [CAS-7697] for i in range(len(sigma)): if sigma[i] == 0.0: minval[i] = peakval[i] = 0.0 # too many variations in the RMS ? sigma_pos = sigma[np.where(sigma>0)] smin = sigma_pos.min() smax = sigma_pos.max() logging.info("sigma varies from %f to %f; %d/%d channels ok" % (smin,smax,len(sigma_pos),len(sigma))) if maxvrms > 0: if smax/smin > maxvrms: cliprms = smin * maxvrms logging.warning("sigma varies too much, going to clip to %g (%g > %g)" % (cliprms, smax/smin, maxvrms)) sigma = np.where(sigma < cliprms, sigma, cliprms) # @todo (and check again) for foobar.fits all sigma's became 0 when robust was selected # was this with mask=True/False? # PeakPointPlot (can be expensive, hence the option) if use_ppp: logging.info("Computing MaxPos for PeakPointPlot") xpos = np.zeros(nchan) ypos = np.zeros(nchan) peaksum = np.zeros(nchan) ia.open(self.dir(fin)) for i in range(nchan): if sigma[i] > 0.0: plane = ia.getchunk(blc=[0,0,i,-1],trc=[-1,-1,i,-1],dropdeg=True) v = ma.masked_invalid(plane) v_abs = np.absolute(v) max = np.unravel_index(v_abs.argmax(), v_abs.shape) xpos[i] = max[0] ypos[i] = max[1] if numsigma > 0.0: peaksum[i] = ma.masked_less(v,numsigma * sigma[i]).sum() peaksum = np.nan_to_num(peaksum) # put 0's where nan's are found ia.close() dt.tag("ppp") nzeros = len(np.where(sigma<=0.0)) if nzeros > 0: zeroch = np.where(sigma<=0.0) logging.warning("There are %d fully masked channels (%s)" % (nzeros,str(zeroch))) # construct the admit Table for CubeStats_BDP # note data needs to be a tuple, later to be column_stack'd if use_ppp: labels = ["channel" ,"frequency" ,"mean" ,"sigma" ,"max" ,"maxposx" ,"maxposy" ,"min", "peaksum"] units = ["number" ,"GHz" ,"Jy/beam" ,"Jy/beam" ,"Jy/beam" ,"number" ,"number" ,"Jy/beam", "Jy"] data = (chans ,freqs ,mean ,sigma ,peakval ,xpos ,ypos ,minval, peaksum) else: labels = ["channel" ,"frequency" ,"mean" ,"sigma" ,"max" ,"min"] units = ["number" ,"GHz" ,"Jy/beam" ,"Jy/beam" ,"Jy/beam" ,"Jy/beam"] data = (chans ,freqs ,mean ,sigma ,peakval ,minval) table = Table(columns=labels,units=units,data=np.column_stack(data)) b2.setkey("table",table) # get the full cube statistics, it depends if robust was pre-selected if nrargs == 0: mean0 = imstat0["mean"][0] sigma0 = imstat0["medabsdevmed"][0]*1.4826 peak0 = imstat0["max"][0] b2.setkey("mean" , float(mean0)) b2.setkey("sigma", float(sigma0)) b2.setkey("minval",float(imstat0["min"][0])) b2.setkey("maxval",float(imstat0["max"][0])) b2.setkey("minpos",imstat0["minpos"][:3].tolist()) #? [] or array(..dtype=int32) ?? b2.setkey("maxpos",imstat0["maxpos"][:3].tolist()) #? [] or array(..dtype=int32) ?? logging.info("CubeMax: %f @ %s" % (imstat0["max"][0],str(imstat0["maxpos"]))) logging.info("CubeMin: %f @ %s" % (imstat0["min"][0],str(imstat0["minpos"]))) logging.info("CubeRMS: %f" % sigma0) else: mean0 = imstat0["mean"][0] sigma0 = imstat0["rms"][0] peak0 = imstat10["max"][0] b2.setkey("mean" , float(mean0)) b2.setkey("sigma", float(sigma0)) b2.setkey("minval",float(imstat10["min"][0])) b2.setkey("maxval",float(imstat10["max"][0])) b2.setkey("minpos",imstat10["minpos"][:3].tolist()) #? [] or array(..dtype=int32) ?? b2.setkey("maxpos",imstat10["maxpos"][:3].tolist()) #? [] or array(..dtype=int32) ?? logging.info("CubeMax: %f @ %s" % (imstat10["max"][0],str(imstat10["maxpos"]))) logging.info("CubeMin: %f @ %s" % (imstat10["min"][0],str(imstat10["minpos"]))) logging.info("CubeRMS: %f" % sigma0) b2.setkey("robust",robust) rms_ratio = imstat0["rms"][0]/sigma0 logging.info("RMS Sanity check %f" % rms_ratio) if rms_ratio > 1.5: logging.warning("RMS sanity check = %f. Either bad sidelobes, lotsa signal, or both" % rms_ratio) logging.regression("CST: %f %f" % (sigma0, rms_ratio)) # plots: no plots need to be made when nchan=1 for continuum # however we could make a histogram, overlaying the "best" gauss so # signal deviations are clear? logging.info('mean,rms,S/N=%f %f %f' % (mean0,sigma0,peak0/sigma0)) if nchan == 1: # for a continuum/1-channel we only need to stuff some numbers into the _summary self._summary["chanrms"] = SummaryEntry([float(sigma0), fin], "CubeStats_AT", self.id(True)) self._summary["dynrange"] = SummaryEntry([float(peak0)/float(sigma0), fin], "CubeStats_AT", self.id(True)) self._summary["datamean"] = SummaryEntry([float(mean0), fin], "CubeStats_AT", self.id(True)) else: y1 = np.log10(ma.masked_invalid(peakval)) y2 = np.log10(ma.masked_invalid(sigma)) y3 = y1-y2 y4 = np.log10(ma.masked_invalid(-minval)) y5 = y1-y4 y = [y1,y2,y3,y4] title = 'CubeStats: ' + bdp_name+'_0' xlab = 'Channel' ylab = 'log(Peak,Noise,Peak/Noise)' labels = ['log(peak)','log(rms noise)','log(peak/noise)','log(|minval|)'] myplot = APlot(ptype=self._plot_type,pmode=self._plot_mode,abspath=self.dir()) segp = [[chans[0],chans[nchan-1],math.log10(sigma0),math.log10(sigma0)]] myplot.plotter(chans,y,title,bdp_name+"_0",xlab=xlab,ylab=ylab,segments=segp,labels=labels,thumbnail=True) imfile = myplot.getFigure(figno=myplot.figno,relative=True) thumbfile = myplot.getThumbnail(figno=myplot.figno,relative=True) image0 = Image(images={bt.PNG:imfile},thumbnail=thumbfile,thumbnailtype=bt.PNG,description="CubeStats_0") b2.addimage(image0,"im0") if use_ppp: # new trial for Lee title = 'PeakSum: (numsigma=%.1f)' % (numsigma) ylab = 'Jy*N_ppb' myplot.plotter(chans,[peaksum],title,bdp_name+"_00",xlab=xlab,ylab=ylab,thumbnail=False) if True: # hack ascii table y30 = np.where(sigma > 0, np.log10(peakval/sigma), 0.0) table2 = Table(columns=["freq","log(P/N)"],data=np.column_stack((freqs,y30))) table2.exportTable(self.dir("testCubeStats.tab")) del table2 # the "box" for the "spectrum" is all pixels. Don't know how to # get this except via shape. ia.open(self.dir(fin)) s = ia.summary() ia.close() if 'shape' in s: specbox = (0,0,s['shape'][0],s['shape'][1]) else: specbox = () caption = "Emission characteristics as a function of channel, as derived by CubeStats_AT " caption += "(cyan: global rms," caption += " green: noise per channel," caption += " blue: peak value per channel," caption += " red: peak/noise per channel)." self._summary["spectra"] = SummaryEntry([0, 0, str(specbox), 'Channel', imfile, thumbfile , caption, fin], "CubeStats_AT", self.id(True)) self._summary["chanrms"] = SummaryEntry([float(sigma0), fin], "CubeStats_AT", self.id(True)) # @todo Will imstat["max"][0] always be equal to s['datamax']? If not, why not? if 'datamax' in s: self._summary["dynrange"] = SummaryEntry([float(s['datamax']/sigma0), fin], "CubeStats_AT", self.id(True)) else: self._summary["dynrange"] = SummaryEntry([float(imstat0["max"][0]/sigma0), fin], "CubeStats_AT", self.id(True)) self._summary["datamean"] = SummaryEntry([imstat0["mean"][0], fin], "CubeStats_AT", self.id(True)) title = bdp_name + "_1" xlab = 'log(Peak,Noise,P/N)' myplot.histogram([y1,y2,y3],title,bdp_name+"_1",xlab=xlab,thumbnail=True) imfile = myplot.getFigure(figno=myplot.figno,relative=True) thumbfile = myplot.getThumbnail(figno=myplot.figno,relative=True) image1 = Image(images={bt.PNG:imfile},thumbnail=thumbfile,thumbnailtype=bt.PNG,description="CubeStats_1") b2.addimage(image1,"im1") # note that the 'y2' can have been clipped, which can throw off stats.robust() # @todo should set a mask for those. title = bdp_name + "_2" xlab = 'log(Noise))' n = len(y2) ry2 = stats.robust(y2) y2_mean = ry2.mean() y2_std = ry2.std() if n>9: logging.debug("NORMALTEST2: %s" % str(scipy.stats.normaltest(ry2))) myplot.hisplot(y2,title,bdp_name+"_2",xlab=xlab,gauss=[y2_mean,y2_std],thumbnail=True) title = bdp_name + "_3" xlab = 'log(diff[Noise])' n = len(y2) # dy2 = y2[0:-2] - y2[1:-1] dy2 = ma.masked_equal(y2[0:-2] - y2[1:-1],0.0).compressed() rdy2 = stats.robust(dy2) dy2_mean = rdy2.mean() dy2_std = rdy2.std() if n>9: logging.debug("NORMALTEST3: %s" % str(scipy.stats.normaltest(rdy2))) myplot.hisplot(dy2,title,bdp_name+"_3",xlab=xlab,gauss=[dy2_mean,dy2_std],thumbnail=True) title = bdp_name + "_4" xlab = 'log(Signal/Noise))' n = len(y3) ry3 = stats.robust(y3) y3_mean = ry3.mean() y3_std = ry3.std() if n>9: logging.debug("NORMALTEST4: %s" % str(scipy.stats.normaltest(ry3))) myplot.hisplot(y3,title,bdp_name+"_4",xlab=xlab,gauss=[y3_mean,y3_std],thumbnail=True) title = bdp_name + "_5" xlab = 'log(diff[Signal/Noise)])' n = len(y3) dy3 = y3[0:-2] - y3[1:-1] rdy3 = stats.robust(dy3) dy3_mean = rdy3.mean() dy3_std = rdy3.std() if n>9: logging.debug("NORMALTEST5: %s" % str(scipy.stats.normaltest(rdy3))) myplot.hisplot(dy3,title,bdp_name+"_5",xlab=xlab,gauss=[dy3_mean,dy3_std],thumbnail=True) title = bdp_name + "_6" xlab = 'log(Peak+Min)' n = len(y1) ry5 = stats.robust(y5) y5_mean = ry5.mean() y5_std = ry5.std() if n>9: logging.debug("NORMALTEST6: %s" % str(scipy.stats.normaltest(ry5))) myplot.hisplot(y5,title,bdp_name+"_6",xlab=xlab,gauss=[y5_mean,y5_std],thumbnail=True) logging.debug("LogPeak: m,s= %f %f min/max %f %f" % (y1.mean(),y1.std(),y1.min(),y1.max())) logging.debug("LogNoise: m,s= %f %f %f %f min/max %f %f" % (y2.mean(),y2.std(),y2_mean,y2_std,y2.min(),y2.max())) logging.debug("LogDeltaNoise: RMS/sqrt(2)= %f %f " % (dy2.std()/math.sqrt(2),dy2_std/math.sqrt(2))) logging.debug("LogDeltaP/N: RMS/sqrt(2)= %f %f" % (dy3.std()/math.sqrt(2),dy3_std/math.sqrt(2))) logging.debug("LogPeak+Min: robust m,s= %f %f" % (y5_mean,y5_std)) # compute two ratios that should both be near 1.0 if noise is 'normal' ratio = y2.std()/(dy2.std()/math.sqrt(2)) ratio2 = y2_std/(dy2_std/math.sqrt(2)) logging.info("RMS BAD VARIATION RATIO: %f %f" % (ratio,ratio2)) # making PPP plot if nchan > 1 and use_ppp: smax = 10 gamma = 0.75 z0 = peakval/peakval.max() # point sizes s = np.pi * ( smax * (z0**gamma) )**2 cmds = ["grid", "axis equal"] title = "Peak Points per channel" pppimage = bdp_name + '_ppp' myplot.scatter(xpos,ypos,title=title,figname=pppimage,size=s,color=chans,cmds=cmds,thumbnail=True) pppimage = myplot.getFigure(figno=myplot.figno,relative=True) pppthumbnail = myplot.getThumbnail(figno=myplot.figno,relative=True) caption = "Peak point plot: Locations of per-channel peaks in the image cube " + fin self._summary["peakpnt"] = SummaryEntry([pppimage, pppthumbnail, caption, fin], "CubeStats_AT", self.id(True)) dt.tag("plotting") # making PeakStats plot if nchan > 1 and psample > 0: logging.info("Computing peakstats") # grab peak,mean and width values for all peaks (pval,mval,wval) = peakstats(self.dir(fin),freqs,sigma0,pnumsigma,minchan,maxgap,psample,peakfit) title = "PeakStats: cutoff = %g" % (sigma0*pnumsigma) xlab = 'Peak value' ylab = 'FWHM (channels)' pppimage = bdp_name + '_peakstats' cval = mval myplot.scatter(pval,wval,title=title,xlab=xlab,ylab=ylab,color=cval,figname=pppimage,thumbnail=False) dt.tag("peakstats") # myplot.final() # pjt debug # all done! dt.tag("done") taskargs = "robust=" + sumrargs if use_ppp: taskargs = taskargs + " ppp=True" else: taskargs = taskargs + " ppp=False" for v in self._summary: self._summary[v].setTaskArgs(taskargs) dt.tag("summary") dt.end()
def run(self): """ The run method creates the BDP Parameters ---------- None Returns ------- None """ dt = utils.Dtime("CubeSum") # tagging time self._summary = {} # an ADMIT summary will be created here numsigma = self.getkey("numsigma") # get the input keys sigma = self.getkey("sigma") use_lines = self.getkey("linesum") pad = self.getkey("pad") b1 = self._bdp_in[0] # spw image cube b1a = self._bdp_in[1] # cubestats (optional) b1b = self._bdp_in[2] # linelist (optional) f1 = b1.getimagefile(bt.CASA) taskinit.ia.open(self.dir(f1)) s = taskinit.ia.summary() nchan = s['shape'][2] if b1b != None: ch0 = b1b.table.getFullColumnByName("startchan") ch1 = b1b.table.getFullColumnByName("endchan") s = Segments(ch0,ch1,nchan=nchan) # @todo something isn't merging here as i would have expected, # e.g. test0.fits [(16, 32), (16, 30), (16, 29)] if pad > 0: for (c0,c1) in s.getsegmentsastuples(): s.append([c0-pad,c0]) s.append([c1,c1+pad]) s.merge() s.recalcmask() # print "PJT segments:",s.getsegmentsastuples() ns = len(s.getsegmentsastuples()) chans = s.chans(not use_lines) if use_lines: msum = s.getmask() else: msum = 1 - s.getmask() logging.info("Read %d segments" % ns) # print "chans",chans # print "msum",msum # from a deprecated keyword, but kept here to pre-smooth the spectrum before clipping # examples are: ['boxcar',3] ['gaussian',7] ['hanning',5] smooth= [] sig_const = False # figure out if sigma is taken as constant in the cube if b1a == None: # if no 2nd BDP was given, sigma needs to be specified if sigma <= 0.0: raise Exception,"Neither user-supplied sigma nor CubeStats_BDP input given. One is required." else: sig_const = True # and is constant else: if sigma > 0: sigma = b1a.get("sigma") sig_const = True if sig_const: logging.info("Using constant sigma = %f" % sigma) else: logging.info("Using varying sigma per plane") infile = b1.getimagefile(bt.CASA) # ADMIT filename of the image (cube) bdp_name = self.mkext(infile,'csm') # morph to the new output name with replaced extension 'csm' image_out = self.dir(bdp_name) # absolute filename args = {"imagename" : self.dir(infile)} # assemble arguments for immoments() args["moments"] = 0 # only need moments=0 (or [0] is ok as well) args["outfile"] = image_out # note full pathname dt.tag("start") if sig_const: args["excludepix"] = [-numsigma*sigma, numsigma*sigma] # single global sigma if b1b != None: # print "PJT: ",chans args["chans"] = chans else: # @todo in this section bad channels can cause a fully masked cubesum = bad # cubestats input sigma_array = b1a.table.getColumnByName("sigma") # channel dependent sigma sigma_pos = sigma_array[np.where(sigma_array>0)] smin = sigma_pos.min() smax = sigma_pos.max() logging.info("sigma varies from %f to %f" % (smin,smax)) maxval = b1a.get("maxval") # max in cube nzeros = len(np.where(sigma_array<=0.0)[0]) # check bad channels if nzeros > 0: logging.warning("There are %d NaN channels " % nzeros) # raise Exception,"need to recode CubeSum or use constant sigma" dt.tag("grab_sig") if len(smooth) > 0: # see also LineID and others filter = Filter1D.Filter1D(sigma_array,smooth[0],**Filter1D.Filter1D.convertargs(smooth)) sigma_array = filter.run() dt.tag("smooth_sig") # create a CASA image copy for making the mirror sigma cube to mask against file = self.dir(infile) mask = file+"_mask" taskinit.ia.fromimage(infile=file, outfile=mask) nx = taskinit.ia.shape()[0] ny = taskinit.ia.shape()[1] nchan = taskinit.ia.shape()[2] taskinit.ia.fromshape(shape=[nx,ny,1]) plane = taskinit.ia.getchunk([0,0,0],[-1,-1,0]) # convenience plane for masking operation dt.tag("mask_sig") taskinit.ia.open(mask) dt.tag("open_mask") count = 0 for i in range(nchan): if sigma_array[i] > 0: if b1b != None: if msum[i]: taskinit.ia.putchunk(plane*0+sigma_array[i],blc=[0,0,i,-1]) count = count + 1 else: taskinit.ia.putchunk(plane*0+maxval,blc=[0,0,i,-1]) else: taskinit.ia.putchunk(plane*0+sigma_array[i],blc=[0,0,i,-1]) count = count + 1 else: taskinit.ia.putchunk(plane*0+maxval,blc=[0,0,i,-1]) taskinit.ia.close() logging.info("%d/%d channels used for CubeSum" % (count,nchan)) dt.tag("close_mask") names = [file, mask] tmp = file + '.tmp' if numsigma == 0.0: # hopefully this will also make use of the mask exp = "IM0[IM1<%f]" % (0.99*maxval) else: exp = "IM0[abs(IM0/IM1)>%f]" % (numsigma) # print "PJT: exp",exp casa.immath(mode='evalexpr', imagename=names, expr=exp, outfile=tmp) args["imagename"] = tmp dt.tag("immath") casa.immoments(**args) dt.tag("immoments") if sig_const is False: # get rid of temporary files utils.remove(tmp) utils.remove(mask) # get the flux taskinit.ia.open(image_out) st = taskinit.ia.statistics() taskinit.ia.close() dt.tag("statistics") # report that flux, but there's no way to get the units from casa it seems # ia.summary()['unit'] is usually 'Jy/beam.km/s' for ALMA # imstat() does seem to know it. if st.has_key('flux'): rdata = [st['flux'][0],st['sum'][0]] logging.info("Total flux: %f (sum=%f)" % (st['flux'],st['sum'])) else: rdata = [st['sum'][0]] logging.info("Sum: %f (beam parameters missing)" % (st['sum'])) logging.regression("CSM: %s" % str(rdata)) # Create two output images for html and their thumbnails, too implot = ImPlot(ptype=self._plot_type,pmode=self._plot_mode,abspath=self.dir()) implot.plotter(rasterfile=bdp_name,figname=bdp_name,colorwedge=True) figname = implot.getFigure(figno=implot.figno,relative=True) thumbname = implot.getThumbnail(figno=implot.figno,relative=True) dt.tag("implot") thumbtype = bt.PNG # really should be correlated with self._plot_type!! # 2. Create a histogram of the map data # get the data for a histogram data = casautil.getdata(image_out,zeromask=True).compressed() dt.tag("getdata") # get the label for the x axis bunit = casa.imhead(imagename=image_out, mode="get", hdkey="bunit") # Make the histogram plot # Since we give abspath in the constructor, figname should be relative myplot = APlot(ptype=self._plot_type,pmode=self._plot_mode,abspath=self.dir()) auxname = bdp_name + "_histo" auxtype = bt.PNG # really should be correlated with self._plot_type!! myplot.histogram(columns = data, figname = auxname, xlab = bunit, ylab = "Count", title = "Histogram of CubeSum: %s" % (bdp_name), thumbnail=True) auxname = myplot.getFigure(figno=myplot.figno,relative=True) auxthumb = myplot.getThumbnail(figno=myplot.figno,relative=True) images = {bt.CASA : bdp_name, bt.PNG : figname} casaimage = Image(images = images, auxiliary = auxname, auxtype = auxtype, thumbnail = thumbname, thumbnailtype = thumbtype) if hasattr(b1,"line"): # SpwCube doesn't have Line line = deepcopy(getattr(b1,"line")) if type(line) != type(Line): line = Line(name="Undetermined") else: line = Line(name="Undetermined") # fake a Line if there wasn't one self.addoutput(Moment_BDP(xmlFile=bdp_name,moment=0,image=deepcopy(casaimage),line=line)) imcaption = "Integral (moment 0) of all emission in image cube" auxcaption = "Histogram of cube sum for image cube" taskargs = "numsigma=%.1f sigma=%g smooth=%s" % (numsigma, sigma, str(smooth)) self._summary["cubesum"] = SummaryEntry([figname,thumbname,imcaption,auxname,auxthumb,auxcaption,bdp_name,infile],"CubeSum_AT",self.id(True),taskargs) dt.tag("done") dt.end()
def run(self): """ The run method creates the BDP Parameters ---------- None Returns ------- None """ dt = utils.Dtime("CubeSum") # tagging time self._summary = {} # an ADMIT summary will be created here numsigma = self.getkey("numsigma") # get the input keys sigma = self.getkey("sigma") use_lines = self.getkey("linesum") pad = self.getkey("pad") b1 = self._bdp_in[0] # spw image cube b1a = self._bdp_in[1] # cubestats (optional) b1b = self._bdp_in[2] # linelist (optional) f1 = b1.getimagefile(bt.CASA) taskinit.ia.open(self.dir(f1)) s = taskinit.ia.summary() nchan = s['shape'][2] if b1b != None: ch0 = b1b.table.getFullColumnByName("startchan") ch1 = b1b.table.getFullColumnByName("endchan") s = Segments(ch0, ch1, nchan=nchan) # @todo something isn't merging here as i would have expected, # e.g. test0.fits [(16, 32), (16, 30), (16, 29)] if pad > 0: for (c0, c1) in s.getsegmentsastuples(): s.append([c0 - pad, c0]) s.append([c1, c1 + pad]) s.merge() s.recalcmask() # print "PJT segments:",s.getsegmentsastuples() ns = len(s.getsegmentsastuples()) chans = s.chans(not use_lines) if use_lines: msum = s.getmask() else: msum = 1 - s.getmask() logging.info("Read %d segments" % ns) # print "chans",chans # print "msum",msum # from a deprecated keyword, but kept here to pre-smooth the spectrum before clipping # examples are: ['boxcar',3] ['gaussian',7] ['hanning',5] smooth = [] sig_const = False # figure out if sigma is taken as constant in the cube if b1a == None: # if no 2nd BDP was given, sigma needs to be specified if sigma <= 0.0: raise Exception, "Neither user-supplied sigma nor CubeStats_BDP input given. One is required." else: sig_const = True # and is constant else: if sigma > 0: sigma = b1a.get("sigma") sig_const = True if sig_const: logging.info("Using constant sigma = %f" % sigma) else: logging.info("Using varying sigma per plane") infile = b1.getimagefile(bt.CASA) # ADMIT filename of the image (cube) bdp_name = self.mkext( infile, 'csm' ) # morph to the new output name with replaced extension 'csm' image_out = self.dir(bdp_name) # absolute filename args = { "imagename": self.dir(infile) } # assemble arguments for immoments() args["moments"] = 0 # only need moments=0 (or [0] is ok as well) args["outfile"] = image_out # note full pathname dt.tag("start") if sig_const: args["excludepix"] = [-numsigma * sigma, numsigma * sigma] # single global sigma if b1b != None: # print "PJT: ",chans args["chans"] = chans else: # @todo in this section bad channels can cause a fully masked cubesum = bad # cubestats input sigma_array = b1a.table.getColumnByName( "sigma") # channel dependent sigma sigma_pos = sigma_array[np.where(sigma_array > 0)] smin = sigma_pos.min() smax = sigma_pos.max() logging.info("sigma varies from %f to %f" % (smin, smax)) maxval = b1a.get("maxval") # max in cube nzeros = len(np.where(sigma_array <= 0.0)[0]) # check bad channels if nzeros > 0: logging.warning("There are %d NaN channels " % nzeros) # raise Exception,"need to recode CubeSum or use constant sigma" dt.tag("grab_sig") if len(smooth) > 0: # see also LineID and others filter = Filter1D.Filter1D( sigma_array, smooth[0], **Filter1D.Filter1D.convertargs(smooth)) sigma_array = filter.run() dt.tag("smooth_sig") # create a CASA image copy for making the mirror sigma cube to mask against file = self.dir(infile) mask = file + "_mask" taskinit.ia.fromimage(infile=file, outfile=mask) nx = taskinit.ia.shape()[0] ny = taskinit.ia.shape()[1] nchan = taskinit.ia.shape()[2] taskinit.ia.fromshape(shape=[nx, ny, 1]) plane = taskinit.ia.getchunk( [0, 0, 0], [-1, -1, 0]) # convenience plane for masking operation dt.tag("mask_sig") taskinit.ia.open(mask) dt.tag("open_mask") count = 0 for i in range(nchan): if sigma_array[i] > 0: if b1b != None: if msum[i]: taskinit.ia.putchunk(plane * 0 + sigma_array[i], blc=[0, 0, i, -1]) count = count + 1 else: taskinit.ia.putchunk(plane * 0 + maxval, blc=[0, 0, i, -1]) else: taskinit.ia.putchunk(plane * 0 + sigma_array[i], blc=[0, 0, i, -1]) count = count + 1 else: taskinit.ia.putchunk(plane * 0 + maxval, blc=[0, 0, i, -1]) taskinit.ia.close() logging.info("%d/%d channels used for CubeSum" % (count, nchan)) dt.tag("close_mask") names = [file, mask] tmp = file + '.tmp' if numsigma == 0.0: # hopefully this will also make use of the mask exp = "IM0[IM1<%f]" % (0.99 * maxval) else: exp = "IM0[abs(IM0/IM1)>%f]" % (numsigma) # print "PJT: exp",exp casa.immath(mode='evalexpr', imagename=names, expr=exp, outfile=tmp) args["imagename"] = tmp dt.tag("immath") casa.immoments(**args) dt.tag("immoments") if sig_const is False: # get rid of temporary files utils.remove(tmp) utils.remove(mask) # get the flux taskinit.ia.open(image_out) st = taskinit.ia.statistics() taskinit.ia.close() dt.tag("statistics") # report that flux, but there's no way to get the units from casa it seems # ia.summary()['unit'] is usually 'Jy/beam.km/s' for ALMA # imstat() does seem to know it. if st.has_key('flux'): rdata = [st['flux'][0], st['sum'][0]] logging.info("Total flux: %f (sum=%f)" % (st['flux'], st['sum'])) else: rdata = [st['sum'][0]] logging.info("Sum: %f (beam parameters missing)" % (st['sum'])) logging.regression("CSM: %s" % str(rdata)) # Create two output images for html and their thumbnails, too implot = ImPlot(ptype=self._plot_type, pmode=self._plot_mode, abspath=self.dir()) implot.plotter(rasterfile=bdp_name, figname=bdp_name, colorwedge=True) figname = implot.getFigure(figno=implot.figno, relative=True) thumbname = implot.getThumbnail(figno=implot.figno, relative=True) dt.tag("implot") thumbtype = bt.PNG # really should be correlated with self._plot_type!! # 2. Create a histogram of the map data # get the data for a histogram data = casautil.getdata(image_out, zeromask=True).compressed() dt.tag("getdata") # get the label for the x axis bunit = casa.imhead(imagename=image_out, mode="get", hdkey="bunit") # Make the histogram plot # Since we give abspath in the constructor, figname should be relative myplot = APlot(ptype=self._plot_type, pmode=self._plot_mode, abspath=self.dir()) auxname = bdp_name + "_histo" auxtype = bt.PNG # really should be correlated with self._plot_type!! myplot.histogram(columns=data, figname=auxname, xlab=bunit, ylab="Count", title="Histogram of CubeSum: %s" % (bdp_name), thumbnail=True) auxname = myplot.getFigure(figno=myplot.figno, relative=True) auxthumb = myplot.getThumbnail(figno=myplot.figno, relative=True) images = {bt.CASA: bdp_name, bt.PNG: figname} casaimage = Image(images=images, auxiliary=auxname, auxtype=auxtype, thumbnail=thumbname, thumbnailtype=thumbtype) if hasattr(b1, "line"): # SpwCube doesn't have Line line = deepcopy(getattr(b1, "line")) if type(line) != type(Line): line = Line(name="Undetermined") else: line = Line(name="Undetermined") # fake a Line if there wasn't one self.addoutput( Moment_BDP(xmlFile=bdp_name, moment=0, image=deepcopy(casaimage), line=line)) imcaption = "Integral (moment 0) of all emission in image cube" auxcaption = "Histogram of cube sum for image cube" taskargs = "numsigma=%.1f sigma=%g smooth=%s" % (numsigma, sigma, str(smooth)) self._summary["cubesum"] = SummaryEntry([ figname, thumbname, imcaption, auxname, auxthumb, auxcaption, bdp_name, infile ], "CubeSum_AT", self.id(True), taskargs) dt.tag("done") dt.end()
def run(self): """ The run method, calculates the moments and creates the BDP(s) Parameters ---------- None Returns ------- None """ self._summary = {} momentsummary = [] dt = utils.Dtime("Moment") # variable to track if we are using a single cutoff for all moment maps allsame = False moments = self.getkey("moments") numsigma = self.getkey("numsigma") mom0clip = self.getkey("mom0clip") # determine if there is only 1 cutoff or if there is a cutoff for each moment if len(moments) != len(numsigma): if len(numsigma) != 1: raise Exception("Length of numsigma and moment lists do not match. They must be the same length or the length of the cutoff list must be 1.") allsame = True # default moment file extensions, this is information copied from casa.immoments() momentFileExtensions = {-1: ".average", 0: ".integrated", 1: ".weighted_coord", 2: ".weighted_dispersion_coord", 3: ".median", 4: "", 5: ".standard_deviation", 6: ".rms", 7: ".abs_mean_dev", 8: ".maximum", 9: ".maximum_coord", 10: ".minimum", 11: ".minimum_coord", } logging.debug("MOMENT: %s %s %s" % (str(moments), str(numsigma), str(allsame))) # get the input casa image from bdp[0] # also get the channels the line actually covers (if any) bdpin = self._bdp_in[0] infile = bdpin.getimagefile(bt.CASA) chans = self.getkey("chans") # the basename of the moments, we will append _0, _1, etc. basename = self.mkext(infile, "mom") fluxname = self.mkext(infile, "flux") # beamarea = nppb(self.dir(infile)) beamarea = 1.0 # until we have it from the MOM0 map sigma0 = self.getkey("sigma") sigma = sigma0 ia = taskinit.iatool() dt.tag("open") # if no CubseStats BDP was given and no sigma was specified, find a # noise level via casa.imstat() if self._bdp_in[1] is None and sigma <= 0.0: raise Exception("A sigma or a CubeStats_BDP must be input to calculate the cutoff") elif self._bdp_in[1] is not None: sigma = self._bdp_in[1].get("sigma") # immoments is a bit peculiar. If you give one moment, it will use # exactly the outfile you picked for multiple moments, it will pick # extensions such as .integrated [0], .weighted_coord [1] etc. # we loop over the moments and will use the numeric extension instead. # Might be laborious loop for big input cubes # # arguments for immoments args = {"imagename" : self.dir(infile), "moments" : moments, "outfile" : self.dir(basename)} # set the channels if given if chans != "": args["chans"] = chans # error check the mom0clip input if mom0clip > 0.0 and not 0 in moments: logging.warning("mom0clip given, but no moment0 map was requested. One will be generated anyway.") # add moment0 to the list of computed moments, but it has to be first moments.insert(0,0) if not allsame: numsigma.insert(0, 2.0*sigma) if allsame: # this is only executed now if len(moments) > 1 and len(cutoff)==1 args["excludepix"] = [-numsigma[0] * sigma, numsigma[0] * sigma] casa.immoments(**args) dt.tag("immoments-all") else: # this is execute if len(moments)==len(cutoff) , even when len=1 for i in range(len(moments)): args["excludepix"] = [-numsigma[i] * sigma, numsigma[i] * sigma] args["moments"] = moments[i] args["outfile"] = self.dir(basename + momentFileExtensions[moments[i]]) casa.immoments(**args) dt.tag("immoments-%d" % moments[i]) taskargs = "moments=%s numsigma=%s" % (str(moments), str(numsigma)) if sigma0 > 0: taskargs = taskargs + " sigma=%.2f" % sigma0 if mom0clip > 0: taskargs = taskargs + " mom0clip=%g" % mom0clip if chans == "": taskargs = taskargs + " chans=all" else: taskargs = taskargs + " chans=%s" % str(chans) taskargs += ' <span style="background-color:white"> ' + basename.split('/')[0] + ' </span>' # generate the mask to be applied to all but moment 0 if mom0clip > 0.0: # get the statistics from mom0 map # this is usually a very biased map, so unclear if mom0sigma is all that reliable args = {"imagename": self.dir(infile)} stat = casa.imstat(imagename=self.dir(basename + momentFileExtensions[0])) mom0sigma = float(stat["sigma"][0]) # generate a temporary masked file, mask will be copied to other moments args = {"imagename" : self.dir(basename + momentFileExtensions[0]), "expr" : 'IM0[IM0>%f]' % (mom0clip * mom0sigma), "outfile" : self.dir("mom0.masked") } casa.immath(**args) # get the default mask name ia.open(self.dir("mom0.masked")) defmask = ia.maskhandler('default') ia.close() dt.tag("mom0clip") # loop over moments to rename them to _0, _1, _2 etc. # apply a mask as well for proper histogram creation map = {} myplot = APlot(pmode=self._plot_mode,ptype=self._plot_type,abspath=self.dir()) implot = ImPlot(pmode=self._plot_mode,ptype=self._plot_type,abspath=self.dir()) for mom in moments: figname = imagename = "%s_%i" % (basename, mom) tempname = basename + momentFileExtensions[mom] # rename and remove the old one if there is one utils.rename(self.dir(tempname), self.dir(imagename)) # copy the moment0 mask if requested; this depends on that mom0 was done before if mom0clip > 0.0 and mom != 0: #print "PJT: output=%s:%s" % (self.dir(imagename), defmask[0]) #print "PJT: inpmask=%s:%s" % (self.dir("mom0.masked"),defmask[0]) makemask(mode="copy", inpimage=self.dir("mom0.masked"), output="%s:%s" % (self.dir(imagename), defmask[0]), overwrite=True, inpmask="%s:%s" % (self.dir("mom0.masked"), defmask[0])) ia.open(self.dir(imagename)) ia.maskhandler('set', defmask) ia.close() dt.tag("makemask") if mom == 0: beamarea = nppb(self.dir(imagename)) implot.plotter(rasterfile=imagename,figname=figname, colorwedge=True,zoom=self.getkey("zoom")) imagepng = implot.getFigure(figno=implot.figno,relative=True) thumbname = implot.getThumbnail(figno=implot.figno,relative=True) images = {bt.CASA : imagename, bt.PNG : imagepng} thumbtype=bt.PNG dt.tag("implot") # get the data for a histogram (ia access is about 1000-2000 faster than imval()) map[mom] = casautil.getdata(self.dir(imagename)) data = map[mom].compressed() dt.tag("getdata") # make the histogram plot # get the label for the x axis bunit = casa.imhead(imagename=self.dir(imagename), mode="get", hdkey="bunit") # object for the caption objectname = casa.imhead(imagename=self.dir(imagename), mode="get", hdkey="object") # Make the histogram plot # Since we give abspath in the constructor, figname should be relative auxname = imagename + '_histo' auxtype = bt.PNG myplot.histogram(columns = data, figname = auxname, xlab = bunit, ylab = "Count", title = "Histogram of Moment %d: %s" % (mom, imagename), thumbnail=True) casaimage = Image(images = images, auxiliary = auxname, auxtype = auxtype, thumbnail = thumbname, thumbnailtype = thumbtype) auxname = myplot.getFigure(figno=myplot.figno,relative=True) auxthumb = myplot.getThumbnail(figno=myplot.figno,relative=True) if hasattr(self._bdp_in[0], "line"): # SpwCube doesn't have Line line = deepcopy(getattr(self._bdp_in[0], "line")) if not isinstance(line, Line): line = Line(name="Unidentified") else: # fake a Line if there wasn't one line = Line(name="Unidentified") # add the BDP to the output array self.addoutput(Moment_BDP(xmlFile=imagename, moment=mom, image=deepcopy(casaimage), line=line)) dt.tag("ren+mask_%d" % mom) imcaption = "%s Moment %d map of Source %s" % (line.name, mom, objectname) auxcaption = "Histogram of %s Moment %d of Source %s" % (line.name, mom, objectname) thismomentsummary = [line.name, mom, imagepng, thumbname, imcaption, auxname, auxthumb, auxcaption, infile] momentsummary.append(thismomentsummary) if map.has_key(0) and map.has_key(1) and map.has_key(2): logging.debug("MAPs present: %s" % (map.keys())) # m0 needs a new mask, inherited from the more restricted m1 (and m2) m0 = ma.masked_where(map[1].mask,map[0]) m1 = map[1] m2 = map[2] m01 = m0*m1 m02 = m0*m1*m1 m22 = m0*m2*m2 sum0 = m0.sum() vmean = m01.sum()/sum0 # lacking the full 3D cube, get two estimates and take the max sig1 = math.sqrt(m02.sum()/sum0 - vmean*vmean) sig2 = m2.max() #vsig = max(sig1,sig2) vsig = sig1 # consider clipping in the masked array (mom0clip) # @todo i can't use info from line, so just borrow basename for now for grepping # this also isn't really the flux, the points per beam is still in there loc = basename.rfind('/') sum1 = ma.masked_less(map[0],0.0).sum() # mom0clip # print out: LINE,FLUX1,FLUX0,BEAMAREA,VMEAN,VSIGMA for regression # the linechans parameter in bdpin is not useful to print out here, it's local to the LineCube s_vlsr = admit.Project.summaryData.get('vlsr')[0].getValue()[0] s_rest = admit.Project.summaryData.get('restfreq')[0].getValue()[0]/1e9 s_line = line.frequency if loc>0: if basename[:loc][0:2] == 'U_': # for U_ lines we'll reference the VLSR w.r.t. RESTFREQ in that band if abs(vmean) > vsig: vwarn = '*' else: vwarn = '' vlsr = vmean + (1.0-s_line/s_rest)*utils.c msg = "MOM0FLUX: %s %g %g %g %g %g %g" % (basename[:loc],map[0].sum(),sum0,beamarea,vmean,vlsr,vsig) else: # for identified lines we'll assume the ID was correct and not bother with RESTFREQ msg = "MOM0FLUX: %s %g %g %g %g %g %g" % (basename[:loc],map[0].sum(),sum0,beamarea,vmean,vmean,vsig) else: msg = "MOM0FLUX: %s %g %g %g %g %g %g" % ("SPW_FULL" ,map[0].sum(),sum0,beamarea,vmean,vmean,vsig) logging.regression(msg) dt.tag("mom0flux") # create a histogram of flux per channel # grab the X coordinates for the histogram, we want them in km/s # restfreq should also be in summary restfreq = casa.imhead(self.dir(infile),mode="get",hdkey="restfreq")['value']/1e9 # in GHz # print "PJT %.10f %.10f" % (restfreq,s_rest) imval0 = casa.imval(self.dir(infile)) freqs = imval0['coords'].transpose()[2]/1e9 x = (1-freqs/restfreq)*utils.c # h = casa.imstat(self.dir(infile), axes=[0,1]) if h.has_key('flux'): flux0 = h['flux'] else: flux0 = h['sum']/beamarea flux0sum = flux0.sum() * abs(x[1]-x[0]) # @todo make a flux1 with fluxes derived from a good mask flux1 = flux0 # construct histogram title = 'Flux Spectrum (%g)' % flux0sum xlab = 'VLSR (km/s)' ylab = 'Flux (Jy)' myplot.plotter(x,[flux0,flux1],title=title,figname=fluxname,xlab=xlab,ylab=ylab,histo=True) dt.tag("flux-spectrum") self._summary["moments"] = SummaryEntry(momentsummary, "Moment_AT", self.id(True), taskargs) # get rid of the temporary mask if mom0clip > 0.0: utils.rmdir(self.dir("mom0.masked")) dt.tag("done") dt.end()
def run(self): """ The run method, calculates the moments and creates the BDP(s) Parameters ---------- None Returns ------- None """ self._summary = {} momentsummary = [] dt = utils.Dtime("Moment") # variable to track if we are using a single cutoff for all moment maps allsame = False moments = self.getkey("moments") numsigma = self.getkey("numsigma") mom0clip = self.getkey("mom0clip") # determine if there is only 1 cutoff or if there is a cutoff for each moment if len(moments) != len(numsigma): if len(numsigma) != 1: raise Exception("Length of numsigma and moment lists do not match. They must be the same length or the length of the cutoff list must be 1.") allsame = True # default moment file extensions, this is information copied from casa.immoments() momentFileExtensions = {-1: ".average", 0: ".integrated", 1: ".weighted_coord", 2: ".weighted_dispersion_coord", 3: ".median", 4: "", 5: ".standard_deviation", 6: ".rms", 7: ".abs_mean_dev", 8: ".maximum", 9: ".maximum_coord", 10: ".minimum", 11: ".minimum_coord", } logging.debug("MOMENT: %s %s %s" % (str(moments), str(numsigma), str(allsame))) # get the input casa image from bdp[0] # also get the channels the line actually covers (if any) bdpin = self._bdp_in[0] infile = bdpin.getimagefile(bt.CASA) chans = self.getkey("chans") # the basename of the moments, we will append _0, _1, etc. basename = self.mkext(infile, "mom") fluxname = self.mkext(infile, "flux") # beamarea = nppb(self.dir(infile)) beamarea = 1.0 # until we have it from the MOM0 map sigma0 = self.getkey("sigma") sigma = sigma0 dt.tag("open") # if no CubseStats BDP was given and no sigma was specified, find a # noise level via casa.imstat() if self._bdp_in[1] is None and sigma <= 0.0: raise Exception("A sigma or a CubeStats_BDP must be input to calculate the cutoff") elif self._bdp_in[1] is not None: sigma = self._bdp_in[1].get("sigma") # immoments is a bit peculiar. If you give one moment, it will use # exactly the outfile you picked for multiple moments, it will pick # extensions such as .integrated [0], .weighted_coord [1] etc. # we loop over the moments and will use the numeric extension instead. # Might be laborious loop for big input cubes # # arguments for immoments args = {"imagename" : self.dir(infile), "moments" : moments, "outfile" : self.dir(basename)} # set the channels if given if chans != "": args["chans"] = chans # error check the mom0clip input if mom0clip > 0.0 and not 0 in moments: logging.warning("mom0clip given, but no moment0 map was requested. One will be generated anyway.") # add moment0 to the list of computed moments, but it has to be first moments.insert(0,0) if not allsame: numsigma.insert(0, 2.0*sigma) if allsame: # this is only executed now if len(moments) > 1 and len(cutoff)==1 args["excludepix"] = [-numsigma[0] * sigma, numsigma[0] * sigma] casa.immoments(**args) dt.tag("immoments-all") else: # this is execute if len(moments)==len(cutoff) , even when len=1 for i in range(len(moments)): args["excludepix"] = [-numsigma[i] * sigma, numsigma[i] * sigma] args["moments"] = moments[i] args["outfile"] = self.dir(basename + momentFileExtensions[moments[i]]) casa.immoments(**args) dt.tag("immoments-%d" % moments[i]) taskargs = "moments=%s numsigma=%s" % (str(moments), str(numsigma)) if sigma0 > 0: taskargs = taskargs + " sigma=%.2f" % sigma0 if mom0clip > 0: taskargs = taskargs + " mom0clip=%g" % mom0clip if chans == "": taskargs = taskargs + " chans=all" else: taskargs = taskargs + " chans=%s" % str(chans) taskargs += ' <span style="background-color:white"> ' + basename.split('/')[0] + ' </span>' # generate the mask to be applied to all but moment 0 if mom0clip > 0.0: # get the statistics from mom0 map # this is usually a very biased map, so unclear if mom0sigma is all that reliable args = {"imagename": self.dir(infile)} stat = casa.imstat(imagename=self.dir(basename + momentFileExtensions[0])) mom0sigma = float(stat["sigma"][0]) # generate a temporary masked file, mask will be copied to other moments args = {"imagename" : self.dir(basename + momentFileExtensions[0]), "expr" : 'IM0[IM0>%f]' % (mom0clip * mom0sigma), "outfile" : self.dir("mom0.masked") } casa.immath(**args) # get the default mask name taskinit.ia.open(self.dir("mom0.masked")) defmask = taskinit.ia.maskhandler('default') taskinit.ia.close() dt.tag("mom0clip") # loop over moments to rename them to _0, _1, _2 etc. # apply a mask as well for proper histogram creation map = {} myplot = APlot(pmode=self._plot_mode,ptype=self._plot_type,abspath=self.dir()) implot = ImPlot(pmode=self._plot_mode,ptype=self._plot_type,abspath=self.dir()) for mom in moments: figname = imagename = "%s_%i" % (basename, mom) tempname = basename + momentFileExtensions[mom] # rename and remove the old one if there is one utils.rename(self.dir(tempname), self.dir(imagename)) # copy the moment0 mask if requested; this depends on that mom0 was done before if mom0clip > 0.0 and mom != 0: #print "PJT: output=%s:%s" % (self.dir(imagename), defmask[0]) #print "PJT: inpmask=%s:%s" % (self.dir("mom0.masked"),defmask[0]) makemask(mode="copy", inpimage=self.dir("mom0.masked"), output="%s:%s" % (self.dir(imagename), defmask[0]), overwrite=True, inpmask="%s:%s" % (self.dir("mom0.masked"), defmask[0])) taskinit.ia.open(self.dir(imagename)) taskinit.ia.maskhandler('set', defmask) taskinit.ia.close() dt.tag("makemask") if mom == 0: beamarea = nppb(self.dir(imagename)) implot.plotter(rasterfile=imagename,figname=figname,colorwedge=True) imagepng = implot.getFigure(figno=implot.figno,relative=True) thumbname = implot.getThumbnail(figno=implot.figno,relative=True) images = {bt.CASA : imagename, bt.PNG : imagepng} thumbtype=bt.PNG dt.tag("implot") # get the data for a histogram (ia access is about 1000-2000 faster than imval()) map[mom] = casautil.getdata(self.dir(imagename)) data = map[mom].compressed() dt.tag("getdata") # make the histogram plot # get the label for the x axis bunit = casa.imhead(imagename=self.dir(imagename), mode="get", hdkey="bunit") # object for the caption objectname = casa.imhead(imagename=self.dir(imagename), mode="get", hdkey="object") # Make the histogram plot # Since we give abspath in the constructor, figname should be relative auxname = imagename + '_histo' auxtype = bt.PNG myplot.histogram(columns = data, figname = auxname, xlab = bunit, ylab = "Count", title = "Histogram of Moment %d: %s" % (mom, imagename), thumbnail=True) casaimage = Image(images = images, auxiliary = auxname, auxtype = auxtype, thumbnail = thumbname, thumbnailtype = thumbtype) auxname = myplot.getFigure(figno=myplot.figno,relative=True) auxthumb = myplot.getThumbnail(figno=myplot.figno,relative=True) if hasattr(self._bdp_in[0], "line"): # SpwCube doesn't have Line line = deepcopy(getattr(self._bdp_in[0], "line")) if not isinstance(line, Line): line = Line(name="Unidentified") else: # fake a Line if there wasn't one line = Line(name="Unidentified") # add the BDP to the output array self.addoutput(Moment_BDP(xmlFile=imagename, moment=mom, image=deepcopy(casaimage), line=line)) dt.tag("ren+mask_%d" % mom) imcaption = "%s Moment %d map of Source %s" % (line.name, mom, objectname) auxcaption = "Histogram of %s Moment %d of Source %s" % (line.name, mom, objectname) thismomentsummary = [line.name, mom, imagepng, thumbname, imcaption, auxname, auxthumb, auxcaption, infile] momentsummary.append(thismomentsummary) if map.has_key(0) and map.has_key(1) and map.has_key(2): logging.debug("MAPs present: %s" % (map.keys())) # m0 needs a new mask, inherited from the more restricted m1 (and m2) m0 = ma.masked_where(map[1].mask,map[0]) m1 = map[1] m2 = map[2] m01 = m0*m1 m02 = m0*m1*m1 m22 = m0*m2*m2 sum0 = m0.sum() vmean = m01.sum()/sum0 # lacking the full 3D cube, get two estimates and take the max sig1 = math.sqrt(m02.sum()/sum0 - vmean*vmean) sig2 = m2.max() #vsig = max(sig1,sig2) vsig = sig1 # consider clipping in the masked array (mom0clip) # @todo i can't use info from line, so just borrow basename for now for grepping # this also isn't really the flux, the points per beam is still in there loc = basename.rfind('/') sum1 = ma.masked_less(map[0],0.0).sum() # mom0clip # print out: LINE,FLUX1,FLUX0,BEAMAREA,VMEAN,VSIGMA for regression # the linechans parameter in bdpin is not useful to print out here, it's local to the LineCube s_vlsr = admit.Project.summaryData.get('vlsr')[0].getValue()[0] s_rest = admit.Project.summaryData.get('restfreq')[0].getValue()[0]/1e9 s_line = line.frequency if loc>0: if basename[:loc][0:2] == 'U_': # for U_ lines we'll reference the VLSR w.r.t. RESTFREQ in that band if abs(vmean) > vsig: vwarn = '*' else: vwarn = '' vlsr = vmean + (1.0-s_line/s_rest)*utils.c msg = "MOM0FLUX: %s %g %g %g %g %g %g" % (basename[:loc],map[0].sum(),sum0,beamarea,vmean,vlsr,vsig) else: # for identified lines we'll assume the ID was correct and not bother with RESTFREQ msg = "MOM0FLUX: %s %g %g %g %g %g %g" % (basename[:loc],map[0].sum(),sum0,beamarea,vmean,vmean,vsig) else: msg = "MOM0FLUX: %s %g %g %g %g %g %g" % ("SPW_FULL" ,map[0].sum(),sum0,beamarea,vmean,vmean,vsig) logging.regression(msg) dt.tag("mom0flux") # create a histogram of flux per channel # grab the X coordinates for the histogram, we want them in km/s # restfreq should also be in summary restfreq = casa.imhead(self.dir(infile),mode="get",hdkey="restfreq")['value']/1e9 # in GHz # print "PJT %.10f %.10f" % (restfreq,s_rest) imval0 = casa.imval(self.dir(infile)) freqs = imval0['coords'].transpose()[2]/1e9 x = (1-freqs/restfreq)*utils.c # h = casa.imstat(self.dir(infile), axes=[0,1]) if h.has_key('flux'): flux0 = h['flux'] else: flux0 = h['sum']/beamarea flux0sum = flux0.sum() * abs(x[1]-x[0]) # @todo make a flux1 with fluxes derived from a good mask flux1 = flux0 # construct histogram title = 'Flux Spectrum (%g)' % flux0sum xlab = 'VLSR (km/s)' ylab = 'Flux (Jy)' myplot.plotter(x,[flux0,flux1],title=title,figname=fluxname,xlab=xlab,ylab=ylab,histo=True) dt.tag("flux-spectrum") self._summary["moments"] = SummaryEntry(momentsummary, "Moment_AT", self.id(True), taskargs) # get rid of the temporary mask if mom0clip > 0.0: utils.rmdir(self.dir("mom0.masked")) dt.tag("done") dt.end()