Example #1
0
def get_steps(n_dim, n_atoms, n_samples, n_test, n_layers, reg, rng, max_iter):
    lista_kwargs = dict(n_layers=n_layers, max_iter=max_iter)
    x, D, z = make_coding(n_samples=n_samples + n_test,
                          n_atoms=n_atoms,
                          n_dim=n_dim,
                          random_state=rng)
    x_test = x[n_samples:]
    x = x[:n_samples]

    c_star = Lista(D, 1000).score(x_test, reg)
    L = np.linalg.norm(D, ord=2)**2  # Lipschitz constant
    network = Lista(D,
                    **lista_kwargs,
                    parametrization='step',
                    per_layer='oneshot')
    init_score = network.score(x_test, reg)
    print(init_score)
    network.fit(x, reg)
    print(network.score(x_test, reg))
    steps = network.get_parameters(name='step_size')
    L_s = np.zeros((n_layers, n_samples))
    for layer in range(1, n_layers + 1):
        z_ = network.transform(x, reg, output_layer=layer)
        supports = z_ != 0
        S_pca = []
        for support in supports:
            idx = np.where(support)[0]
            D_s = D[idx]
            G_s = D_s.T.dot(D_s)
            S_pca.append(np.linalg.eigvalsh(G_s)[-1])
        L_s[layer - 1] = np.array(S_pca)
    return steps, L, L_s, S_pca
Example #2
0
def get_steps(n_dim, n_atoms, n_samples, n_test, n_layers, reg, rng, max_iter):
    lista_kwargs = dict(
        n_layers=n_layers,
        max_iter=max_iter)
    x, D, z = make_coding(n_samples=n_samples + n_test, n_atoms=n_atoms,
                          n_dim=n_dim, random_state=rng)
    x_test = x[n_samples:]
    x = x[:n_samples]

    c_star = Lista(D, 1000).score(x_test, reg)
    L = np.linalg.norm(D, ord=2) ** 2  # Lipschitz constant
    network = Lista(D, **lista_kwargs,
                    parametrization='step', per_layer='oneshot')
    init_score = network.score(x_test, reg)
    print(init_score)
    network.fit(x, reg)
    print(network.score(x_test, reg))
    steps = network.get_parameters(name='step_size')
    z_ = network.transform(x, reg)
    supports = np.unique(z_ != 0, axis=0)
    S_pca = []
    for support in supports:
        D_s = D[support]
        G_s = D_s.T.dot(D_s)
        S_pca.append(np.linalg.eigvalsh(G_s)[-1])
    L_s = np.max(S_pca)
    return steps, L, L_s, S_pca
Example #3
0
def get_params(n_samples, n_atoms, n_dim, rng, max_iter, training, n_layers):
    x, D, z = make_coding(n_samples=n_samples,
                          n_atoms=n_atoms,
                          n_dim=n_dim,
                          random_state=rng)

    lista = Lista(D,
                  n_layers,
                  parametrization='coupled',
                  max_iter=max_iter,
                  per_layer=training,
                  verbose=1)
    lista.fit(x, reg)

    W_list = lista.get_parameters('W_coupled')
    thresholds = lista.get_parameters('threshold')
    return D, W_list, thresholds
Example #4
0
            for support in supports:
                D_s = D[support]
                G_s = D_s.T.dot(D_s)
                S_pca.append(np.linalg.eigvalsh(G_s)[-1])
            L_s_list.append(np.max(S_pca))
        L_s_list = np.array(L_s_list)

        network_hack = deepcopy(network)
        network_hack.set_parameters('step_size',
                                    np.array(2 / L_s_list[-1]),
                                    offset=25)

        #######################################################################
        # Retrieve the step size values
        #
        steps = network.get_parameters(name='step_size')
        steps_hack = network_hack.get_parameters(name='step_size')
        if parametrization == "first_step":
            steps_hack[0] = steps[0] = network.get_parameters('threshold')[0]

        #######################################################################
        # Retrieve the losses
        #
        losses = np.array([
            network.score(x_test, reg, output_layer=layer + 1)
            for layer in range(n_layers)
        ])
        losses_hack = np.array([
            network_hack.score(x_test, reg, output_layer=layer + 1)
            for layer in range(n_layers)
        ])