Example #1
0
def eval_cl_model():
    eval_from_vals = ["pretrain_cl", "final_cl"]
    assert flags.eval_from in eval_from_vals, "eval_from must be one of %s" % eval_from_vals
    if flags.eval_from == "final_cl":
        model_save_suffix = model_save_suffixes["train_cl_model"]
    else:
        model_save_suffix = model_save_suffixes["pre_train_cl_model"]
    save_model_path = osp.join(flags.save_model_dir, model_save_suffix)
    generator_model = AdversarialDDGModel(
        init_modules=AdversarialDDGModel.eval_cl_modules)
    generator_model.build(eval_cl=True)
    generator_model.eval(save_model_path=save_model_path)
Example #2
0
def eval_generator(eval_batch_size=flags["eval_batch_size"],
                   eval_topic_count=flags["eval_topic_count"],
                   eval_seq_length=flags["eval_seq_length"]):
    eval_from_vals = ["generator", "topic_generator"]
    assert flags.eval_from in eval_from_vals, "eval_from must be one of %s" % eval_from_vals
    if flags.eval_from == "generator":
        model_save_suffix = model_save_suffixes["train_generator"]
    else:
        model_save_suffix = model_save_suffixes["train_topic_generator"]
    save_model_path = osp.join(flags.save_model_dir, model_save_suffix)
    generator_model = AdversarialDDGModel(
        init_modules=AdversarialDDGModel.eval_graph_modules)
    generator_model.build(eval_seq=True,
                          batch_size=eval_batch_size,
                          topic_count=eval_topic_count,
                          seq_length=eval_seq_length)
    generator_model.eval(save_model_path=save_model_path)