def adverse_validation(dev, batchez, glove):
    samples = len(batchez[1])
    discriminator = am.discriminator(glove, 50)
    ad_model = am.adverse_model(discriminator)
    res = ad_model.fit([dev[1][:samples], batchez[1]], np.zeros(samples), validation_split=0.1, 
                       verbose = 0, nb_epoch = 20, callbacks = [EarlyStopping(patience=2)])
    return np.min(res.history['val_loss'])
Example #2
0
def adverse_model_train(model_dir, train, aug_train, dev, aug_dev, dim, glove):
    discriminator = am.discriminator(glove, dim)
    ad_model = am.adverse_model(discriminator)
    dev_len = len(aug_dev[1])
    res = ad_model.fit([train[1], aug_train[1]], np.zeros(len(train[1])),
                       validation_data=([dev[1][:dev_len], aug_dev[1]], np.zeros(dev_len)),
                       verbose = 1, nb_epoch = 5)
    discriminator.save_weights(model_dir + '/adverse.weights')
def adverse_validation(dev, batchez, glove):
    samples = len(batchez[1])
    discriminator = am.discriminator(glove, 50)
    ad_model = am.adverse_model(discriminator)
    res = ad_model.fit([dev[1][:samples], batchez[1]],
                       np.zeros(samples),
                       validation_split=0.1,
                       verbose=0,
                       nb_epoch=20,
                       callbacks=[EarlyStopping(patience=2)])
    return np.min(res.history['val_loss'])