Example #1
0
class DesireLinesProcedure(WorkerThread):
    def __init__(self, parentThread, layer: str, id_field: int, matrix: AequilibraeMatrix, matrix_hash: dict,
                 dl_type: str) -> None:
        WorkerThread.__init__(self, parentThread)
        self.layer = layer
        self.id_field = id_field
        self.matrix = matrix
        self.dl_type = dl_type
        self.error = None
        self.matrix_hash = matrix_hash
        self.report = []
        self.logger = logging.getLogger('aequilibrae')
        self.nodes_to_indices = {matrix.index[x]: x for x in range(matrix.zones)}
        self.python_version = (8 * struct.calcsize("P"))

        if error:
            self.error = 'Scipy and/or Numpy not installed'
            self.report.append(self.error)
        self.procedure = "ASSIGNMENT"

    def doWork(self):
        if self.error is None:
            # In case we have only one class
            unnasigned = 0
            classes = self.matrix.matrix_view.shape[2]

            layer = get_vector_layer_by_name(self.layer)
            idx = layer.dataProvider().fieldNameIndex(self.id_field)
            feature_count = layer.featureCount()
            self.desire_lines.emit(('job_size_dl', feature_count))

            all_centroids = {}
            for P, feat in enumerate(layer.getFeatures()):
                geom = feat.geometry()
                if geom is not None:
                    point = list(geom.centroid().asPoint())
                    centroid_id = feat.attributes()[idx]
                    all_centroids[centroid_id] = point
                self.desire_lines.emit(('jobs_done_dl', P))
                self.desire_lines.emit(('text_dl', "Loading Layer Features: " + str(P) + "/" + str(feature_count)))

            # Creating resulting layer
            EPSG_code = int(layer.crs().authid().split(":")[1])

            desireline_layer = QgsVectorLayer("LineString?crs=epsg:" + str(EPSG_code), self.dl_type, "memory")
            dlpr = desireline_layer.dataProvider()
            base_dl_fields = [QgsField("link_id", QVariant.Int),
                              QgsField("A_Node", QVariant.Int),
                              QgsField("B_Node", QVariant.Int),
                              QgsField("direct", QVariant.Int),
                              QgsField("distance", QVariant.Double)]

            if self.dl_type == "DesireLines":
                items = []
                for i, j in all_centroids.items():
                    items.append((i, j[0], j[1]))
                coords = np.array(items)

                coord_index = np.zeros((self.matrix.index[:].max().astype(np.int64) + 1, 2))
                coord_index[coords[:, 0].astype(np.int64), 0] = coords[:, 1]
                coord_index[coords[:, 0].astype(np.int64), 1] = coords[:, 2]

                self.desire_lines.emit(('text_dl', "Manipulating matrix indices"))
                zones = self.matrix.index[:].shape[0]
                a = np.array(self.matrix.index[:], np.int64)
                ij, ji = np.meshgrid(a, a, sparse=False, indexing='ij')
                ij = ij.flatten()
                ji = ji.flatten()

                arrays = [ij, ji]

                self.desire_lines.emit(('text_dl', "Collecting all matrices"))
                self.desire_lines.emit(('job_size_dl', len(self.matrix.view_names)))

                total_mat = np.zeros((zones, zones), np.float64)
                for i, mat in enumerate(self.matrix.view_names):
                    arrays.append(self.matrix.matrix[mat].flatten())
                    total_mat += self.matrix.matrix[mat]
                    self.desire_lines.emit(('jobs_done_dl', i + 1))

                # Eliminates the cells for which we don't have geography
                self.desire_lines.emit(('text_dl', "Filtering zones with no geography available"))
                zones_with_no_geography = [x for x in self.matrix.index[:] if x not in all_centroids]
                if zones_with_no_geography:
                    self.desire_lines.emit(('job_size_dl', len(zones_with_no_geography)))
                for k, z in enumerate(zones_with_no_geography):
                    i = self.matrix.matrix_hash[z]
                    t = np.nansum(total_mat[i, :]) + np.nansum(total_mat[:, i])
                    unnasigned += t
                    self.report.append(
                        'Zone {} does not have a corresponding centroid/zone. Total flow {}'.format(z, t))
                    total_mat[i, :] = 0
                    total_mat[:, i] = 0
                    self.desire_lines.emit(('jobs_done_dl', k + 1))

                self.desire_lines.emit(('text_dl', "Filtering down to OD pairs with flows"))
                field_names = [x for x in self.matrix.view_names]
                nonzero = np.nonzero(total_mat.flatten())
                arrays = np.vstack(arrays).transpose()
                arrays = arrays[nonzero, :]
                arrays = arrays.reshape(arrays.shape[1], arrays.shape[2])

                base_types = [(x, np.float64) for x in ['from', 'to']]
                base_types = base_types + [(x + '_AB', np.float64) for x in field_names]

                dtypes_ab = [(x, np.int64) for x in ['from', 'to']] + [(x + '_AB', float) for x in field_names]
                dtypes_ba = [(x, np.int64) for x in ['to', 'from']] + [(x + '_BA', float) for x in field_names]

                ab_mat = np.array(arrays[arrays[:, 0] > arrays[:, 1], :])
                ba_mat = np.array(arrays[arrays[:, 0] < arrays[:, 1], :])

                flows_ab = ab_mat.view(base_types)
                flows_ab = flows_ab.reshape(flows_ab.shape[:-1])
                flows_ab = flows_ab.astype(dtypes_ab)

                flows_ba = ba_mat.view(base_types)
                flows_ba = flows_ba.reshape(flows_ba.shape[:-1])
                flows_ba = flows_ba.astype(dtypes_ba)

                defaults1 = {x + '_AB': 0.0 for x in field_names}
                defaults = {x + '_BA': 0.0 for x in field_names}
                defaults = {**defaults, **defaults1}

                self.desire_lines.emit(('text_dl', "Concatenating AB & BA flows"))
                flows = rfn.join_by(['from', 'to'], flows_ab, flows_ba, jointype='outer', defaults=defaults,
                                    usemask=True, asrecarray=True)
                flows = flows.filled()
                flows_ab = 0
                flows_ba = 0

                for f in flows.dtype.names[2:]:
                    base_dl_fields.extend([QgsField(f, QVariant.Double)])

                dlpr.addAttributes(base_dl_fields)
                desireline_layer.updateFields()

                self.desire_lines.emit(('text_dl', "Creating Desire Lines"))
                self.desire_lines.emit(('job_size_dl', flows.shape[0]))
                all_features = []
                for i, rec in enumerate(flows):
                    a_node = rec[0]
                    b_node = rec[1]

                    a_point = QgsPointXY(*all_centroids[a_node])
                    b_point = QgsPointXY(*all_centroids[b_node])
                    dist = QgsGeometry().fromPointXY(a_point).distance(
                        QgsGeometry().fromPointXY(b_point))
                    feature = QgsFeature()
                    feature.setGeometry(QgsGeometry.fromPolylineXY([a_point, b_point]))

                    attrs = [i + 1, int(a_node), int(b_node), 0, dist]
                    attrs.extend([float(x) for x in list(rec)[2:]])
                    feature.setAttributes(attrs)
                    all_features.append(feature)
                    self.desire_lines.emit(('jobs_done_dl', i))
                if unnasigned > 0:
                    self.report.append('Total non assigned flows (not counting intrazonals):' + str(unnasigned))

                if flows.shape[0] > 1:
                    a = dlpr.addFeatures(all_features)
                    self.result_layer = desireline_layer
                else:
                    self.report.append('Nothing to show')

            elif self.dl_type == "DelaunayLines":

                for f in self.matrix.view_names:
                    base_dl_fields.extend([QgsField(f + '_ab', QVariant.Double),
                                           QgsField(f + '_ba', QVariant.Double),
                                           QgsField(f + '_tot', QVariant.Double)])

                dlpr.addAttributes(base_dl_fields)
                desireline_layer.updateFields()

                self.desire_lines.emit(('text_dl', "Building Delaunay dataset"))
                points = []
                node_id_in_delaunay_results = {}
                i = 0
                self.desire_lines.emit(('job_size_dl', len(all_centroids)))
                for k, v in all_centroids.items():
                    self.desire_lines.emit(('jobs_done_dl', i))
                    points.append(v)
                    node_id_in_delaunay_results[i] = k
                    i += 1

                self.desire_lines.emit(('text_dl', "Computing Delaunay Triangles"))
                tri = Delaunay(np.array(points))

                # We process all the triangles to only get each edge once
                self.desire_lines.emit(('text_dl', "Building Delaunay Network: Collecting Edges"))
                edges = []
                if self.python_version == 32:
                    all_edges = tri.vertices
                else:
                    all_edges = tri.simplices

                self.desire_lines.emit(('job_size_dl', len(all_edges)))

                for j, triangle in enumerate(all_edges):
                    self.desire_lines.emit(('jobs_done_dl', j))
                    links = list(itertools.combinations(triangle, 2))
                    for i in links:
                        edges.append([min(i[0], i[1]), max(i[0], i[1])])

                self.desire_lines.emit(('text_dl', "Building Delaunay Network: Getting unique edges"))
                edges = OrderedDict((str(x), x) for x in edges).values()

                # Writing Delaunay layer
                self.desire_lines.emit(('text_dl', "Building Delaunay Network: Assembling Layer"))

                desireline_link_id = 1
                data = []
                dl_ids_on_links = {}
                self.desire_lines.emit(('job_size_dl', len(edges)))
                for j, edge in enumerate(edges):
                    self.desire_lines.emit(('jobs_done_dl', j))
                    a_node = node_id_in_delaunay_results[edge[0]]
                    a_point = all_centroids[a_node]
                    a_point = QgsPointXY(a_point[0], a_point[1])
                    b_node = node_id_in_delaunay_results[edge[1]]
                    b_point = all_centroids[b_node]
                    b_point = QgsPointXY(b_point[0], b_point[1])
                    dist = QgsGeometry().fromPointXY(a_point).distance(QgsGeometry().fromPointXY(b_point))
                    line = []
                    line.append(desireline_link_id)
                    line.append(a_node)
                    line.append(b_node)
                    line.append(dist)
                    line.append(dist)
                    line.append(0)
                    data.append(line)
                    dl_ids_on_links[desireline_link_id] = [a_node, b_node, 0, dist]
                    desireline_link_id += 1

                self.desire_lines.emit(('text_dl', "Building graph"))
                network = np.asarray(data)
                del data

                # types for the network
                self.graph = Graph()
                itype = self.graph.default_types('int')
                ftype = self.graph.default_types('float')
                all_types = [itype, itype, itype, ftype, ftype, np.int8]
                all_titles = ['link_id', 'a_node', 'b_node', 'distance_ab', 'distance_ba', 'direction']
                dt = [(t, d) for t, d in zip(all_titles, all_types)]
                self.graph.network = np.zeros(network.shape[0], dtype=dt)

                for k, t in enumerate(dt):
                    self.graph.network[t[0]] = network[:, k].astype(t[1])
                del network

                self.graph.type_loaded = 'NETWORK'
                self.graph.status = 'OK'
                self.graph.network_ok = True
                self.graph.prepare_graph(self.matrix.index.astype(np.int64))
                self.graph.set_graph(cost_field='distance', skim_fields=False, block_centroid_flows=False)

                self.results = AssignmentResults()
                self.results.prepare(self.graph, self.matrix)
                self.desire_lines.emit(('text_dl', "Assigning demand"))
                self.desire_lines.emit(('job_size_dl', self.matrix.index.shape[0]))

                assigner = allOrNothing(self.matrix, self.graph, self.results)
                assigner.execute()
                self.report = assigner.report
                print(self.results.link_loads)
                self.desire_lines.emit(('text_dl', "Collecting results"))
                self.desire_lines.emit(('text_dl', "Building resulting layer"))
                features = []
                max_edges = len(edges)
                self.desire_lines.emit(('job_size_dl', max_edges))
                link_loads = self.results.save_to_disk()
                for i, link_id in enumerate(link_loads.index):
                    self.desire_lines.emit(('jobs_done_dl', i))
                    a_node, b_node, direct, dist = dl_ids_on_links[link_id]

                    attr = [int(link_id), a_node, b_node, direct, dist]

                    a_point = all_centroids[a_node]
                    a_point = QgsPointXY(a_point[0], a_point[1])
                    b_point = all_centroids[b_node]
                    b_point = QgsPointXY(b_point[0], b_point[1])

                    feature = QgsFeature()
                    feature.setGeometry(QgsGeometry.fromPolylineXY([a_point, b_point]))

                    for c in self.matrix.view_names:
                        attr.extend([float(link_loads.data[c + '_ab'][i]),
                                     float(link_loads.data[c + '_ba'][i]),
                                     float(link_loads.data[c + '_tot'][i])])
                    feature.setAttributes(attr)
                    features.append(feature)
                a = dlpr.addFeatures(features)
                self.result_layer = desireline_layer

        self.desire_lines.emit(('finished_desire_lines_procedure', 0))
class DesireLinesProcedure(WorkerThread):
    def __init__(self, parentThread, layer, id_field, matrix, matrix_hash, dl_type):
        WorkerThread.__init__(self, parentThread)
        self.layer = layer
        self.id_field = id_field
        self.matrix = matrix
        self.dl_type = dl_type
        self.error = None
        self.matrix_hash = matrix_hash
        self.report = []
        self.nodes_to_indices = {matrix.index[x]: x for x in range(matrix.zones)}
        self.python_version = (8 * struct.calcsize("P"))

        if error:
            self.error = 'Scipy and/or Numpy not installed'
            self.report.append(self.error)
        self.procedure = "ASSIGNMENT"

    def doWork(self):
        if self.error is None:
            # In case we have only one class

            unnasigned = 0
            classes = self.matrix.matrix_view.shape[2]

            layer = get_vector_layer_by_name(self.layer)
            idx = layer.fieldNameIndex(self.id_field)
            feature_count = layer.featureCount()
            self.emit(SIGNAL("desire_lines"), ('job_size_dl', feature_count))

            all_centroids = {}
            P = 0
            for feat in layer.getFeatures():
                P += 1
                self.emit(SIGNAL("desire_lines"), ('jobs_done_dl', P))
                self.emit(SIGNAL("desire_lines"), ('text_dl',"Loading Layer Features: " + str(P) + "/" + str(feature_count)))
                geom = feat.geometry()
                if geom is not None:
                    point = list(geom.centroid().asPoint())
                    centroid_id = feat.attributes()[idx]
                    all_centroids[centroid_id] = point

            #Creating resulting layer
            EPSG_code = int(layer.crs().authid().split(":")[1])

            desireline_layer = QgsVectorLayer("LineString?crs=epsg:" + str(EPSG_code), self.dl_type, "memory")
            dlpr = desireline_layer.dataProvider()
            fields = [QgsField("link_id", QVariant.Int),
                              QgsField("A_Node", QVariant.Int),
                              QgsField("B_Node", QVariant.Int),
                              QgsField("direct", QVariant.Int),
                              QgsField("distance",  QVariant.Double)]
            for f in self.matrix.view_names:
                fields.extend([QgsField(f + '_ab',  QVariant.Double),
                              QgsField(f + '_ba',  QVariant.Double),
                              QgsField(f + '_tot',  QVariant.Double)])

            dlpr.addAttributes(fields)
            desireline_layer.updateFields()

            if self.dl_type == "DesireLines":
                self.emit(SIGNAL("desire_lines"), ('text_dl',"Creating Desire Lines"))
                self.emit(SIGNAL("desire_lines"), ('job_size_dl', self.matrix.zones ** 2 / 2))

                desireline_link_id = 1
                q = 0
                all_features = []
                for i in range(self.matrix.zones):
                    a_node = self.matrix.index[i]
                    if a_node in all_centroids.keys():
                        if np.sum(self.matrix.matrix_view[i, :, :]) + np.sum(self.matrix.matrix_view[:, i, :]) > 0:
                            columns_with_filled_cells = np.nonzero(np.sum(self.matrix.matrix_view[i, :, :], axis=1))
                            for j in columns_with_filled_cells[0]:
                                if np.sum(self.matrix.matrix_view[i, j, :]) + np.sum(self.matrix.matrix_view[j, i, :]) > 0:
                                    b_node = self.matrix.index[j]
                                    if a_node in all_centroids.keys() and b_node in all_centroids.keys():
                                        a_point = all_centroids[a_node]
                                        a_point = QgsPoint(a_point[0], a_point[1])
                                        b_point = all_centroids[b_node]
                                        b_point = QgsPoint(b_point[0], b_point[1])
                                        dist = QgsGeometry().fromPoint(a_point).distance(QgsGeometry().fromPoint(b_point))
                                        feature = QgsFeature()
                                        feature.setGeometry(QgsGeometry.fromPolyline([a_point, b_point]))
                                        attrs = [desireline_link_id, int(a_node), int(b_node), 0, dist]
                                        for c in range(classes):
                                            attrs.extend([float(self.matrix.matrix_view[i, j, c]),
                                                          float(self.matrix.matrix_view[j, i, c]),
                                                           float(self.matrix.matrix_view[i, j, c]) +
                                                          float(self.matrix.matrix_view[j, i, c])])

                                        feature.setAttributes(attrs)
                                        all_features.append(feature)
                                        desireline_link_id += 1
                                    else:
                                        tu = (a_node, b_node, np.sum(self.matrix.matrix_view[i, j, :]),
                                              np.sum(self.matrix.matrix_view[j, i, :]))
                                        self.report.append('No centroids available to depict flow between node {0} and node'
                                                           '{1}. Total AB flow was equal to {2} and total BA flow was '
                                                           'equal to {3}'.format(*tu))
                                        unnasigned += np.sum(self.matrix.matrix_view[i, j, :]) + \
                                                      np.sum(self.matrix.matrix_view[j, i, :])
                    else:
                        tu = (a_node, np.sum(self.matrix.matrix_view[i, :, :]))
                        self.report.append('No centroids available to depict flows from node {0} to all the others.'
                                           'Total flow from this zone is equal to {1}'.format(*tu))
                        unnasigned += np.sum(self.matrix.matrix_view[i, :, :])


                    q += self.matrix.zones
                    self.emit(SIGNAL("desire_lines"), ('jobs_done_dl', q))
                if unnasigned > 0:
                    self.report.append('Total non assigned flows (not counting intrazonals):' + str(unnasigned))

                if desireline_link_id > 1:
                    a = dlpr.addFeatures(all_features)
                    self.result_layer = desireline_layer
                else:
                    self.report.append('Nothing to show')

            elif self.dl_type == "DelaunayLines":

                self.emit(SIGNAL("desire_lines"), ('text_dl', "Building Delaunay dataset"))
                points = []
                node_id_in_delaunay_results = {}
                i = 0
                self.emit(SIGNAL("desire_lines"), ('job_size_dl', len(all_centroids)))
                for k, v in all_centroids.iteritems():
                    self.emit(SIGNAL("desire_lines"), ('jobs_done_dl', i))
                    points.append(v)
                    node_id_in_delaunay_results[i] = k
                    i += 1

                self.emit(SIGNAL("desire_lines"), ('text_dl', "Computing Delaunay Triangles"))
                tri = Delaunay(np.array(points))

                # We process all the triangles to only get each edge once
                self.emit(SIGNAL("desire_lines"), ('text_dl', "Building Delaunay Network: Collecting Edges"))
                edges = []
                if self.python_version == 32:
                    all_edges = tri.vertices
                else:
                    all_edges = tri.simplices

                self.emit(SIGNAL("desire_lines"), ('job_size_dl', len(all_edges)))
                for j, triangle in enumerate(all_edges):
                    self.emit(SIGNAL("desire_lines"), ('jobs_done_dl', j))
                    links = list(itertools.combinations(triangle, 2))
                    for i in links:
                        edges.append([min(i[0],i[1]), max(i[0],i[1])])

                self.emit(SIGNAL("desire_lines"), ('text_dl', "Building Delaunay Network: Getting unique edges"))
                edges = OrderedDict((str(x), x) for x in edges).values()

                # Writing Delaunay layer
                self.emit(SIGNAL("desire_lines"), ('text_dl', "Building Delaunay Network: Assembling Layer"))

                desireline_link_id = 1
                data = []
                dl_ids_on_links = {}
                self.emit(SIGNAL("desire_lines"), ('job_size_dl', len(edges)))
                for j, edge in enumerate(edges):
                    self.emit(SIGNAL("desire_lines"), ('jobs_done_dl', j))
                    a_node = node_id_in_delaunay_results[edge[0]]
                    a_point = all_centroids[a_node]
                    a_point = QgsPoint(a_point[0], a_point[1])
                    b_node = node_id_in_delaunay_results[edge[1]]
                    b_point = all_centroids[b_node]
                    b_point = QgsPoint(b_point[0], b_point[1])
                    dist = QgsGeometry().fromPoint(a_point).distance(QgsGeometry().fromPoint(b_point))
                    line = []
                    line.append(desireline_link_id)
                    line.append(a_node)
                    line.append(b_node)
                    line.append(dist)
                    line.append(dist)
                    line.append(0)
                    data.append(line)
                    dl_ids_on_links[desireline_link_id] = [a_node, b_node, 0, dist]
                    desireline_link_id += 1

                self.emit(SIGNAL("desire_lines"), ('text_dl', "Building graph"))
                network = np.asarray(data)
                del data

                #types for the network
                self.graph = Graph()
                itype = self.graph.default_types('int')
                ftype = self.graph.default_types('float')
                all_types = [itype, itype, itype, ftype, ftype, np.int8]
                all_titles = ['link_id', 'a_node', 'b_node', 'distance_ab', 'distance_ba', 'direction']
                dt = [(t, d) for t, d in zip(all_titles, all_types)]
                self.graph.network = np.zeros(network.shape[0], dtype=dt)

                for k, t in enumerate(dt):
                    self.graph.network[t[0]] = network[:, k].astype(t[1])
                del network

                self.graph.type_loaded = 'NETWORK'
                self.graph.status = 'OK'
                self.graph.network_ok = True
                try:
                    self.graph.prepare_graph(self.matrix.index.astype(np.int64))
                    self.graph.set_graph(cost_field='distance', skim_fields=False, block_centroid_flows=False)

                    self.results = AssignmentResults()
                    self.results.prepare(self.graph, self.matrix)
                    self.emit(SIGNAL("desire_lines"), ('text_dl', "Assigning demand"))
                    self.emit(SIGNAL("desire_lines"), ('job_size_dl', self.matrix.index.shape[0]))

                    assigner = allOrNothing(self.matrix, self.graph, self.results)
                    assigner.execute()
                    self.report = assigner.report
                    self.emit(SIGNAL("desire_lines"), ('text_dl', "Collecting results"))
                    link_loads = self.results.save_to_disk()
                    self.emit(SIGNAL("desire_lines"), ('text_dl', "Building resulting layer"))
                    features = []
                    max_edges = len(edges)
                    self.emit(SIGNAL("desire_lines"), ('job_size_dl', max_edges))

                    for i, link_id in enumerate(link_loads.index):
                        self.emit(SIGNAL("desire_lines"), ('jobs_done_dl', i))
                        a_node, b_node, direct, dist = dl_ids_on_links[link_id]

                        attr = [int(link_id), a_node, b_node, direct, dist]

                        a_point = all_centroids[a_node]
                        a_point = QgsPoint(a_point[0], a_point[1])
                        b_point = all_centroids[b_node]
                        b_point = QgsPoint(b_point[0], b_point[1])

                        feature = QgsFeature()
                        feature.setGeometry(QgsGeometry.fromPolyline([a_point, b_point]))

                        for c in self.matrix.view_names:
                            attr.extend([float(link_loads.data[c + '_ab'][i]),
                                         float(link_loads.data[c + '_ba'][i]),
                                         float(link_loads.data[c + '_tot'][i])])
                        feature.setAttributes(attr)
                        features.append(feature)
                    a = dlpr.addFeatures(features)
                    self.result_layer = desireline_layer
                except ValueError as error:
                    self.report = [error.message]

        self.emit(SIGNAL("desire_lines"), ('finished_desire_lines_procedure', 0))