Example #1
0
    for airfoil in airfoils:
        Cl_table, Cd_table, Clmax = aero_coeffs.create_Cl_Cd_table(airfoil[0])

        Cl_tables[airfoil[0]] = Cl_table
        Cd_tables[airfoil[0]] = Cd_table
        Clmax[airfoil[0]] = Clmax

# Create list of Cl functions. One for each Reynolds number. Cl_tables (and Cd_tables) will be empty for the
# 'simple' case, therefore this will be skipped for the simple case. For the full table lookup case this will be
# skipped because allowable_Re will be empty.
Cl_funs = {}
Cd_funs = {}
if Cl_tables and allowable_Re:
    Cl_funs = dict(
        zip(allowable_Re, [
            aero_coeffs.get_Cl_fun(Re, Cl_tables[airfoils[0][0]],
                                   Clmax[airfoils[0][0]][Re])
            for Re in allowable_Re
        ]))
    Cd_funs = dict(
        zip(allowable_Re, [
            aero_coeffs.get_Cd_fun(Re, Cd_tables[airfoils[0][0]])
            for Re in allowable_Re
        ]))


def get_performance(o, c, t, v_climb):
    chord_meters = c * radius
    prop = propeller.Propeller(t,
                               chord_meters,
                               radius,
                               n_blades,
def main():
    ###########################################
    # Define some values
    ###########################################
    n_blades = 2
    n_elements = 10
    radius = unit_conversion.in2m(9.6) / 2
    root_cutout = 0.1 * radius
    dy = float(radius - root_cutout) / n_elements
    dr = float(1) / n_elements
    y = root_cutout + dy * np.arange(1, n_elements + 1)
    r = y / radius
    pitch = 0.0
    airfoils = (('SDA1075_494p', 0.0, 1.0), )
    allowable_Re = [
        1000000., 500000., 250000., 100000., 90000., 80000., 70000., 60000.,
        50000., 40000., 30000., 20000., 10000.
    ]
    vehicle_weight = 12.455
    max_chord = 0.3
    max_chord_tip = 5.
    alt = 0
    tip_loss = True
    mach_corr = False

    # Forward flight parameters
    v_inf = 4.  # m/s
    alpha0 = 0.0454  # Starting guess for trimmed alpha in radians
    n_azi_elements = 5

    # Mission times
    time_in_hover = 300.  # Time in seconds
    time_in_ff = 500.
    mission_time = [time_in_hover, time_in_ff]

    Cl_tables = {}
    Cd_tables = {}
    Clmax = {}
    # Get lookup tables
    if any(airfoil[0] != 'simple' for airfoil in airfoils):
        for airfoil in airfoils:
            Cl_table, Cd_table, Clmax = aero_coeffs.create_Cl_Cd_table(
                airfoil[0])

            Cl_tables[airfoil[0]] = Cl_table
            Cd_tables[airfoil[0]] = Cd_table
            Clmax[airfoil[0]] = Clmax

    # Create list of Cl functions. One for each Reynolds number. Cl_tables (and Cd_tables) will be empty for the
    # 'simple' case, therefore this will be skipped for the simple case. For the full table lookup case this will be
    # skipped because allowable_Re will be empty.
    Cl_funs = {}
    Cd_funs = {}
    lift_curve_info_dict = {}
    if Cl_tables and allowable_Re:
        Cl_funs = dict(
            zip(allowable_Re, [
                aero_coeffs.get_Cl_fun(Re, Cl_tables[airfoils[0][0]],
                                       Clmax[airfoils[0][0]][Re])
                for Re in allowable_Re
            ]))
        Cd_funs = dict(
            zip(allowable_Re, [
                aero_coeffs.get_Cd_fun(Re, Cd_tables[airfoils[0][0]])
                for Re in allowable_Re
            ]))
        lift_curve_info_dict = aero_coeffs.create_liftCurveInfoDict(
            allowable_Re, Cl_tables[airfoils[0][0]])

    ###########################################
    # Set design variable bounds
    ###########################################
    # Hover opt 500 gen, 1000 pop, 12.455 N weight, 9.6 in prop
    chord = np.array([
        0.11923604, 0.2168746, 0.31540216, 0.39822882, 0.42919, 0.35039799,
        0.3457828, 0.28567224, 0.23418368, 0.13502483
    ])
    twist = np.array([
        0.45316866, 0.38457724, 0.38225075, 0.34671967, 0.33151445, 0.28719111,
        0.25679667, 0.25099005, 0.19400679, 0.10926302
    ])
    omega = 3811.03596674 * 2 * np.pi / 60
    original = (omega, chord, twist)

    dtwist = np.array(
        [twist[i + 1] - twist[i] for i in xrange(len(twist) - 1)])
    dchord = np.array(
        [chord[i + 1] - chord[i] for i in xrange(len(chord) - 1)])
    twist0 = twist[0]
    chord0 = chord[0]

    omega_start = omega

    dtwist_start = dtwist
    dchord_start = dchord
    twist0_start = twist0
    chord0_start = chord0

    omega_lower = 2000 * 2 * np.pi / 60
    omega_upper = 8000.0 * 2 * np.pi / 60

    twist0_lower = 0. * 2 * np.pi / 360
    twist0_upper = 60. * 2 * np.pi / 360

    chord0_upper = 0.1198
    chord0_lower = 0.05

    dtwist_lower = -10.0 * 2 * np.pi / 360
    dtwist_upper = 10.0 * 2 * np.pi / 360
    dchord_lower = -0.1
    dchord_upper = 0.1

    opt_prob = Optimization('Mission Simulator', objfun)
    opt_prob.addVar('omega_h',
                    'c',
                    value=omega_start,
                    lower=omega_lower,
                    upper=omega_upper)
    opt_prob.addVar('twist0',
                    'c',
                    value=twist0_start,
                    lower=twist0_lower,
                    upper=twist0_upper)
    opt_prob.addVar('chord0',
                    'c',
                    value=chord0_start,
                    lower=chord0_lower,
                    upper=chord0_upper)
    opt_prob.addVarGroup('dtwist',
                         n_elements - 1,
                         'c',
                         value=dtwist_start,
                         lower=dtwist_lower,
                         upper=dtwist_upper)
    opt_prob.addVarGroup('dchord',
                         n_elements - 1,
                         'c',
                         value=dchord_start,
                         lower=dchord_lower,
                         upper=dchord_upper)
    opt_prob.addObj('f')
    opt_prob.addCon('thrust', 'i')
    opt_prob.addCon('c_tip', 'i')
    opt_prob.addConGroup('c_lower', n_elements, 'i')
    opt_prob.addConGroup('c_upper', n_elements, 'i')
    print opt_prob

    slsqp = SLSQP()
    slsqp.setOption('IPRINT', 1)
    slsqp.setOption('MAXIT', 1000)
    slsqp.setOption('ACC', 1e-8)
    fstr, xstr, inform = slsqp(opt_prob,
                               sens_type='FD',
                               n_blades=n_blades,
                               radius=radius,
                               dy=dy,
                               dr=dr,
                               y=y,
                               r=r,
                               pitch=pitch,
                               airfoils=airfoils,
                               vehicle_weight=vehicle_weight,
                               max_chord=max_chord,
                               tip_loss=tip_loss,
                               mach_corr=mach_corr,
                               Cl_funs=Cl_funs,
                               Cd_funs=Cd_funs,
                               Cl_tables=Cl_tables,
                               Cd_tables=Cd_tables,
                               allowable_Re=allowable_Re,
                               alt=alt,
                               v_inf=v_inf,
                               alpha0=alpha0,
                               mission_time=mission_time,
                               n_azi_elements=n_azi_elements,
                               lift_curve_info_dict=lift_curve_info_dict,
                               max_chord_tip=max_chord_tip)
    print opt_prob.solution(0)

    # pop_size = 300
    # max_gen = 500
    # opt_method = 'nograd'
    # nsga2 = NSGA2()
    # nsga2.setOption('PrintOut', 2)
    # nsga2.setOption('PopSize', pop_size)
    # nsga2.setOption('maxGen', max_gen)
    # nsga2.setOption('pCross_real', 0.85)
    # nsga2.setOption('xinit', 1)
    # fstr, xstr, inform = nsga2(opt_prob, n_blades=n_blades, radius=radius, dy=dy, dr=dr, y=y, r=r, pitch=pitch,
    #                            airfoils=airfoils, vehicle_weight=vehicle_weight, max_chord=max_chord, tip_loss=tip_loss,
    #                            mach_corr=mach_corr, Cl_funs=Cl_funs, Cd_funs=Cd_funs, Cl_tables=Cl_tables,
    #                            Cd_tables=Cd_tables, allowable_Re=allowable_Re, opt_method=opt_method, alt=alt,
    #                            v_inf=v_inf, alpha0=alpha0, mission_time=mission_time, n_azi_elements=n_azi_elements,
    #                            pop_size=pop_size, max_gen=max_gen, lift_curve_info_dict=lift_curve_info_dict,
    #                            max_chord_tip=max_chord_tip)
    # print opt_prob.solution(0)

    # opt_method = 'nograd'
    # xstart_alpso = np.concatenate((np.array([omega_start, twist0_start, chord0_start]), dtwist_start, dchord_start))
    # alpso = ALPSO()
    # alpso.setOption('xinit', 0)
    # alpso.setOption('SwarmSize', 200)
    # alpso.setOption('maxOuterIter', 100)
    # alpso.setOption('stopCriteria', 0)
    # fstr, xstr, inform = alpso(opt_prob, xstart=xstart_alpso,  n_blades=n_blades, n_elements=n_elements,
    #                            root_cutout=root_cutout, radius=radius, dy=dy, dr=dr, y=y, r=r, pitch=pitch,
    #                            airfoils=airfoils, thrust=thrust, max_chord=max_chord, tip_loss=tip_loss,
    #                            mach_corr=mach_corr, Cl_funs=Cl_funs, Cd_funs=Cd_funs, Cl_tables=Cl_tables,
    #                            Cd_tables=Cd_tables, allowable_Re=allowable_Re, opt_method=opt_method)
    # print opt_prob.solution(0)

    def get_performance(o, c, t):
        chord_meters = c * radius
        prop = propeller.Propeller(t,
                                   chord_meters,
                                   radius,
                                   n_blades,
                                   r,
                                   y,
                                   dr,
                                   dy,
                                   airfoils=airfoils,
                                   Cl_tables=Cl_tables,
                                   Cd_tables=Cd_tables)
        quad = quadrotor.Quadrotor(prop, vehicle_weight)

        ff_kwargs = {
            'propeller': prop,
            'pitch': pitch,
            'n_azi_elements': n_azi_elements,
            'allowable_Re': allowable_Re,
            'Cl_funs': Cl_funs,
            'Cd_funs': Cd_funs,
            'tip_loss': tip_loss,
            'mach_corr': mach_corr,
            'alt': alt,
            'lift_curve_info_dict': lift_curve_info_dict
        }
        trim0 = np.array([alpha0, o])
        alpha_trim, omega_trim, converged = trim.trim(quad, v_inf, trim0,
                                                      ff_kwargs)
        T_ff, H_ff, P_ff = bemt.bemt_forward_flight(
            quad,
            pitch,
            omega_trim,
            alpha_trim,
            v_inf,
            n_azi_elements,
            alt=alt,
            tip_loss=tip_loss,
            mach_corr=mach_corr,
            allowable_Re=allowable_Re,
            Cl_funs=Cl_funs,
            Cd_funs=Cd_funs,
            lift_curve_info_dict=lift_curve_info_dict)

        dT_h, P_h = bemt.bemt_axial(prop,
                                    pitch,
                                    o,
                                    allowable_Re=allowable_Re,
                                    Cl_funs=Cl_funs,
                                    Cd_funs=Cd_funs,
                                    tip_loss=tip_loss,
                                    mach_corr=mach_corr,
                                    alt=alt)
        return sum(dT_h), P_h, T_ff, P_ff, alpha_trim, omega_trim

    omega = xstr[0]
    twist0 = xstr[1]
    chord0 = xstr[2]
    dtwist = xstr[3:3 + len(r) - 1]
    dchord = xstr[3 + len(r) - 1:]

    twist = calc_twist_dist(twist0, dtwist)
    chord = calc_chord_dist(chord0, dchord)

    print "chord = " + repr(chord)
    print "twist = " + repr(twist)

    # twist_base = calc_twist_dist(twist0_base, dtwist_base)
    # chord_base = calc_chord_dist(chord0_base, dchord_base)

    perf_opt = get_performance(omega, chord, twist)
    perf_orig = get_performance(original[0], original[1], original[2])

    print "omega_orig = " + str(original[0])
    print "Hover Thrust of original = " + str(perf_orig[0])
    print "Hover Power of original = " + str(perf_orig[1])
    print "FF Thrust of original = " + str(perf_orig[2])
    print "FF Power of original = " + str(perf_orig[3])
    print "Trim original (alpha, omega) = (%f, %f)" % (perf_orig[4],
                                                       perf_orig[5])

    print "omega = " + str(omega * 60 / 2 / np.pi)
    print "Hover Thrust of optimized = " + str(perf_opt[0])
    print "Hover Power of optimized = " + str(perf_opt[1])
    print "FF Thrust of optimized = " + str(perf_opt[2])
    print "FF Power of optimized = " + str(perf_opt[3])
    print "Trim optimized (alpha, omega) = (%f, %f)" % (perf_opt[4],
                                                        perf_opt[5])
    # print "Omega base = " + str(omega_start*60/2/np.pi)
    # print "Thrust of base = " + str(sum(perf_base[0]))
    # print "Power of base = " + str(sum(perf_base[1]))
    #
    plt.figure(1)
    plt.plot(r, original[1], '-b')
    plt.plot(r, chord, '-r')
    plt.xlabel('radial location')
    plt.ylabel('c/R')
    plt.legend(['start', 'opt'])

    plt.figure(2)
    plt.plot(r, original[2] * 180 / np.pi, '-b')
    plt.plot(r, twist * 180 / np.pi, '-r')
    plt.xlabel('radial location')
    plt.ylabel('twist')
    plt.legend(['start', 'opt'])

    plt.show()
Example #3
0
if any(airfoil[0] != 'simple' for airfoil in airfoils):
    for airfoil in airfoils:
        Cl_table, Cd_table, Clmax = aero_coeffs.create_Cl_Cd_table(airfoil[0])

        Cl_tables[airfoil[0]] = Cl_table
        Cd_tables[airfoil[0]] = Cd_table
        Clmax[airfoil[0]] = Clmax

# Create list of Cl functions. One for each Reynolds number. Cl_tables (and Cd_tables) will be empty for the
# 'simple' case, therefore this will be skipped for the simple case. For the full table lookup case this will be
# skipped because allowable_Re will be empty.
Cl_funs = {}
Cd_funs = {}
lift_curve_info_dict = {}
if any(Cl_tables) and allowable_Re:
    Cl_funs = dict(zip(allowable_Re, [aero_coeffs.get_Cl_fun(Re, Cl_tables[airfoils[0][0]], Clmax[airfoils[0][0]][Re]) for Re in allowable_Re]))
    Cd_funs = dict(zip(allowable_Re, [aero_coeffs.get_Cd_fun(Re, Cd_tables[airfoils[0][0]]) for Re in allowable_Re]))
    lift_curve_info_dict = aero_coeffs.create_liftCurveInfoDict(allowable_Re, Cl_tables[airfoils[0][0]])


radius = in2m(15./2)
twist = np.array([6.97, 15.97, 21.77, 21.72, 19.91, 18.14, 16.55, 15.28, 14.01, 13., 12.18, 11.39, 10.76, 10.24, 9.85,
                  9.4, 9.07, 8.7, 8.46, 8.29, 8.19, 8.17]) * 2 * np.pi / 360
chord = in2m(np.array([0.77, 0.97, 1.18, 1.34, 1.44, 1.49, 1.50, 1.49, 1.46, 1.42, 1.38, 1.33, 1.27, 1.21, 1.14, 1.07, 1.,
                       0.93, 0.86, 0.77, 0.67, 0.44]))

prop = propeller.Propeller(twist, chord, radius, n_blades, r, y, dr, dy, airfoils=airfoils, Cl_tables=Cl_tables,
                           Cd_tables=Cd_tables)

quad = quadrotor.Quadrotor(prop, vehicle_weight)
Example #4
0
def main():
    n_blades = 2
    n_elements = 10
    #radius = unit_conversion.in2m(9.0)/2
    radius = 0.193
    root_cutout = 0.1 * radius
    dy = float(radius - root_cutout) / n_elements
    dr = float(1) / n_elements
    y = root_cutout + dy * np.arange(1, n_elements + 1)
    r = y / radius
    pitch = 0.0
    airfoils = (('SDA1075_494p', 0.0, 1.0), )
    allowable_Re = []
    allowable_Re = [
        1000000., 500000., 250000., 100000., 90000., 80000., 70000., 60000.,
        50000., 40000., 30000., 20000., 10000.
    ]
    thrust = 5.5
    max_chord = 0.6
    alt = 4000
    tip_loss = True
    mach_corr = False

    Cl_tables = {}
    Cd_tables = {}
    Clmax = {}
    # Get lookup tables
    if any(airfoil[0] != 'simple' for airfoil in airfoils):
        for airfoil in airfoils:
            Cl_table, Cd_table, Clmax = aero_coeffs.create_Cl_Cd_table(
                airfoil[0])

            Cl_tables[airfoil[0]] = Cl_table
            Cd_tables[airfoil[0]] = Cd_table
            Clmax[airfoil[0]] = Clmax

    # Create list of Cl functions. One for each Reynolds number. Cl_tables (and Cd_tables) will be empty for the
    # 'simple' case, therefore this will be skipped for the simple case. For the full table lookup case this will be
    # skipped because allowable_Re will be empty.
    Cl_funs = {}
    Cd_funs = {}
    if Cl_tables and allowable_Re:
        Cl_funs = dict(
            zip(allowable_Re, [
                aero_coeffs.get_Cl_fun(Re, Cl_tables[airfoils[0][0]],
                                       Clmax[airfoils[0][0]][Re])
                for Re in allowable_Re
            ]))
        Cd_funs = dict(
            zip(allowable_Re, [
                aero_coeffs.get_Cd_fun(Re, Cd_tables[airfoils[0][0]])
                for Re in allowable_Re
            ]))

    ###########################################
    # Set design variable bounds
    ###########################################
    # The DA4002 blade
    chord = np.array([
        0.1198, 0.1128, 0.1436, 0.1689, 0.1775, 0.1782, 0.1773, 0.1782, 0.1790,
        0.1787, 0.1787, 0.1786, 0.1785, 0.1790, 0.1792, 0.1792, 0.1692, 0.0154
    ])
    #chord = np.array([chord[i] for i in [0, 4, 8, 12, 16]])
    #chord = np.array([chord[i] for i in [0, 3, 6, 9, 11, 13, 15, 17]])
    chord = np.array([chord[i] for i in [0, 2, 4, 6, 8, 10, 12, 14, 15, 17]])
    #chord = chord[-1] / r
    twist = np.array([
        42.481, 44.647, 41.154, 37.475, 34.027, 30.549, 27.875, 25.831, 23.996,
        22.396, 21.009, 19.814, 18.786, 17.957, 17.245, 16.657, 13.973, 2.117
    ]) * 2 * np.pi / 360
    #twist = np.array([twist[i] for i in [0, 4, 8, 12, 16]])
    #twist = np.array([twist[i] for i in [0, 3, 6, 9, 11, 13, 15, 17]])
    twist = np.array([twist[i] for i in [0, 2, 4, 6, 8, 10, 12, 14, 15, 17]])

    ##################### NSGA 10 pt Reallowed=1M T=6.31 xinit=base ##################
    # chord = np.array([0.1074969, 0.20649294, 0.30477175, 0.34034408, 0.39389147, 0.38511651, 0.39240366, 0.32613037,
    #                   0.33806846, 0.26398963])
    # twist = np.array([0.90281547, 0.80337759, 0.636879, 0.46309343, 0.33774749, 0.33234442, 0.30418376, 0.2819689,
    #                   0.26313925, 0.24413934])
    # omega = 4611.67993997 * 2*np.pi/60

    #################### NSGA 10 pt 5000p 500g Reallowed=All T=4.61 xinit=base tiploss #######
    # chord = np.array([0.11470868, 0.21117422, 0.30252118, 0.39582241, 0.42498534, 0.41241736, 0.32928823, 0.23259937,
    #                   0.17993009, 0.11100332])
    # twist = np.array([0.55653743, 0.45683294, 0.38657942, 0.39545834, 0.3270524, 0.3053103, 0.27289751, 0.23934658,
    #                   0.20193655, 0.034115])
    # omega = 5286.48230542 *2*np.pi/60

    chord = np.array([
        0.08527494, 0.18305166, 0.28003061, 0.37723735, 0.39791253, 0.38551352,
        0.30090341, 0.20180039, 0.14683824, 0.06464163
    ])
    twist = np.array([
        0.00114182, 0.16927357, 0.33062163, 0.36775474, 0.32781283, 0.30751832,
        0.27097053, 0.24367986, 0.21398367, 0.10101229
    ])
    omega = 2675.92469603 * 2 * np.pi / 60

    chord0 = chord[0]
    twist0 = twist[0]
    dchord = np.array(
        [chord[i + 1] - chord[i] for i in xrange(len(chord) - 1)])
    dtwist = np.array(
        [twist[i + 1] - twist[i] for i in xrange(len(twist) - 1)])

    #omega = 5943.0 * 2*np.pi/60
    omega_upper = 7000 * 2 * np.pi / 60
    omega_lower = 2000. * 2 * np.pi / 60

    # # Twist at the hub must be less than or equal to arcsin(hub_height/hub_diameter), approx 23 degrees
    twist0_lower = 0.0 * 2 * np.pi / 360
    twist0_upper = 0.1 * 2 * np.pi / 360
    # Chord values at the hub must be less than or equal to the diameter of the hub
    chord0_upper = 0.09
    chord0_lower = 0.05

    # dtwist_start = 0.0 * 2 * np.pi / 360
    dtwist_lower = -10.0 * 2 * np.pi / 360
    dtwist_upper = 10.0 * 2 * np.pi / 360
    dchord_lower = -0.1
    dchord_upper = 0.1

    twist_start = twist
    chord_start = chord
    omega_start = omega

    iteration = 0
    fit_old = 1000.
    fit_2old = 1000.
    converged = False
    while not converged:
        iteration += 1
        fstr, xstr = optimize_twist(omega=omega,
                                    omega_lower=omega_lower,
                                    omega_upper=omega_upper,
                                    twist0=twist0,
                                    twist0_lower=twist0_lower,
                                    twist0_upper=twist0_upper,
                                    n_elements=n_elements,
                                    dtwist=dtwist,
                                    dtwist_lower=dtwist_lower,
                                    dtwist_upper=dtwist_upper,
                                    n_blades=n_blades,
                                    root_cutout=root_cutout,
                                    radius=radius,
                                    dy=dy,
                                    dr=dr,
                                    y=y,
                                    r=r,
                                    pitch=pitch,
                                    airfoils=airfoils,
                                    thrust=thrust,
                                    chord=chord,
                                    allowable_Re=allowable_Re,
                                    Cl_tables=Cl_tables,
                                    Cd_tables=Cd_tables,
                                    Cl_funs=Cl_funs,
                                    Cd_funs=Cd_funs,
                                    tip_loss=tip_loss,
                                    mach_corr=mach_corr,
                                    alt=alt)

        omega = xstr[0]
        twist = calc_twist_dist(xstr[1], xstr[2:])

        fstr, xstr = optimize_chord(omega=omega,
                                    omega_lower=omega_lower,
                                    omega_upper=omega_upper,
                                    chord0=chord0,
                                    chord0_lower=chord0_lower,
                                    chord0_upper=chord0_upper,
                                    n_elements=n_elements,
                                    dchord=dchord,
                                    dchord_lower=dchord_lower,
                                    dchord_upper=dchord_upper,
                                    n_blades=n_blades,
                                    root_cutout=root_cutout,
                                    radius=radius,
                                    dy=dy,
                                    dr=dr,
                                    y=y,
                                    r=r,
                                    pitch=pitch,
                                    airfoils=airfoils,
                                    thrust=thrust,
                                    max_chord=max_chord,
                                    twist=twist,
                                    allowable_Re=allowable_Re,
                                    Cl_tables=Cl_tables,
                                    Cd_tables=Cd_tables,
                                    Cl_funs=Cl_funs,
                                    Cd_funs=Cd_funs,
                                    tip_loss=tip_loss,
                                    mach_corr=mach_corr,
                                    alt=alt)

        omega = xstr[0]
        chord = calc_chord_dist(xstr[1], xstr[2:])

        converged = abs(
            (fit_old - fstr) /
            fstr) < 0.005  #and abs((fit_2old - fit_old) / fit_old) < 0.0005
        fit_2old = fit_old
        fit_old = fstr

    print "omega = " + str(omega * 60 / 2 / np.pi)
    print "chord = " + str(chord)
    print "twist = " + str(twist)
    print "iterations = " + str(iteration)

    def get_performance(o, c, t):
        chord_meters = c * radius
        prop = propeller.Propeller(t,
                                   chord_meters,
                                   radius,
                                   n_blades,
                                   r,
                                   y,
                                   dr,
                                   dy,
                                   airfoils=airfoils,
                                   Cl_tables=Cl_tables,
                                   Cd_tables=Cd_tables)

        return bemt.bemt_axial(prop,
                               pitch,
                               o,
                               allowable_Re=allowable_Re,
                               Cl_funs=Cl_funs,
                               Cd_funs=Cd_funs,
                               tip_loss=tip_loss,
                               mach_corr=mach_corr,
                               output='long',
                               alt=alt)

    perf_opt = get_performance(omega, chord, twist)
    perf_start = get_performance(omega_start, chord_start, twist_start)
    print "Thrust of optimized = " + str(sum(perf_opt[0]))
    print "Power of optimized = " + str(sum(perf_opt[1]))
    print "Thrust of start = " + str(sum(perf_start[0]))
    print "Power of start = " + str(sum(perf_start[1]))

    plt.figure(1)
    plt.plot(r, chord_start, '-b')
    plt.plot(r, chord, '-r')
    plt.xlabel('radial location')
    plt.ylabel('c/R')
    plt.legend(['start', 'opt'])

    plt.figure(2)
    plt.plot(r, twist_start * 180 / np.pi, '-b')
    plt.plot(r, twist * 180 / np.pi, '-r')
    plt.xlabel('radial location')
    plt.ylabel('twist')
    plt.legend(['start', 'opt'])

    plt.show()
Example #5
0
def main():
    ###########################################
    # Define some values
    ###########################################
    n_blades = 2
    n_elements = 10
    radius = unit_conversion.in2m(9.6) / 2
    root_cutout = 0.1 * radius
    dy = float(radius - root_cutout) / n_elements
    dr = float(1) / n_elements
    y = root_cutout + dy * np.arange(1, n_elements + 1)
    r = y / radius
    pitch = 0.0
    airfoils = (('SDA1075_494p', 0.0, 1.0), )
    #allowable_Re = []
    allowable_Re = [
        1000000., 500000., 250000., 100000., 90000., 80000., 70000., 60000.,
        50000., 40000., 30000., 20000., 10000.
    ]
    vehicle_weight = 12.455
    max_chord = 0.6
    max_chord_tip = 5.
    alt = 0
    tip_loss = True
    mach_corr = False

    # Forward flight parameters
    v_inf = 4.  # m/s
    alpha0 = 0.0454  # Starting guess for trimmed alpha in radians
    n_azi_elements = 5

    # Mission times
    time_in_hover = 0.  # Time in seconds
    time_in_ff = 500.
    mission_time = [time_in_hover, time_in_ff]

    Cl_tables = {}
    Cd_tables = {}
    Clmax = {}
    # Get lookup tables
    if any(airfoil[0] != 'simple' for airfoil in airfoils):
        for airfoil in airfoils:
            Cl_table, Cd_table, Clmax = aero_coeffs.create_Cl_Cd_table(
                airfoil[0])

            Cl_tables[airfoil[0]] = Cl_table
            Cd_tables[airfoil[0]] = Cd_table
            Clmax[airfoil[0]] = Clmax

    # Create list of Cl functions. One for each Reynolds number. Cl_tables (and Cd_tables) will be empty for the
    # 'simple' case, therefore this will be skipped for the simple case. For the full table lookup case this will be
    # skipped because allowable_Re will be empty.
    Cl_funs = {}
    Cd_funs = {}
    lift_curve_info_dict = {}
    if Cl_tables and allowable_Re:
        Cl_funs = dict(
            zip(allowable_Re, [
                aero_coeffs.get_Cl_fun(Re, Cl_tables[airfoils[0][0]],
                                       Clmax[airfoils[0][0]][Re])
                for Re in allowable_Re
            ]))
        Cd_funs = dict(
            zip(allowable_Re, [
                aero_coeffs.get_Cd_fun(Re, Cd_tables[airfoils[0][0]])
                for Re in allowable_Re
            ]))
        lift_curve_info_dict = aero_coeffs.create_liftCurveInfoDict(
            allowable_Re, Cl_tables[airfoils[0][0]])

    ###########################################
    # Set design variable bounds
    ###########################################
    omega_start = 4250. * 2 * np.pi / 60
    # These are c/R values for the DA4002 propeller given at the UIUC propeller database
    chord_base = np.array([
        0.1198, 0.1128, 0.1436, 0.1689, 0.1775, 0.1782, 0.1773, 0.1782, 0.1790,
        0.1787, 0.1787, 0.1786, 0.1785, 0.1790, 0.1792, 0.1792, 0.1692, 0.0154
    ])
    chord_base = np.array(
        [chord_base[i] for i in [0, 2, 4, 6, 8, 10, 12, 14, 15, 17]])
    twist_base = np.array([
        42.481, 44.647, 41.154, 37.475, 34.027, 30.549, 27.875, 25.831, 23.996,
        22.396, 21.009, 19.814, 18.786, 17.957, 17.245, 16.657, 13.973, 2.117
    ]) * 2 * np.pi / 360
    twist_base = np.array(
        [twist_base[i] for i in [0, 2, 4, 6, 8, 10, 12, 14, 15, 17]])
    dtwist_base = np.array([
        twist_base[i + 1] - twist_base[i] for i in xrange(len(twist_base) - 1)
    ])
    dchord_base = np.array([
        chord_base[i + 1] - chord_base[i] for i in xrange(len(chord_base) - 1)
    ])
    twist0_base = twist_base[0]
    chord0_base = chord_base[0]

    chord_start = chord_base
    twist_start = twist_base
    dtwist_start = dtwist_base
    dchord_start = dchord_base
    twist0_start = twist0_base
    chord0_start = chord0_base
    print "chord0_start = " + str(chord0_start)

    omega_lower = 2000 * 2 * np.pi / 60
    omega_upper = 8000.0 * 2 * np.pi / 60

    twist0_lower = 0. * 2 * np.pi / 360
    twist0_upper = 60. * 2 * np.pi / 360

    chord0_upper = 0.1198
    chord0_lower = 0.05

    dtwist_lower = -10.0 * 2 * np.pi / 360
    dtwist_upper = 10.0 * 2 * np.pi / 360
    dchord_lower = -0.1
    dchord_upper = 0.1

    opt_prob = Optimization('Mission Simulator', objfun)
    opt_prob.addVar('omega_h',
                    'c',
                    value=omega_start,
                    lower=omega_lower,
                    upper=omega_upper)
    opt_prob.addVar('twist0',
                    'c',
                    value=twist0_start,
                    lower=twist0_lower,
                    upper=twist0_upper)
    opt_prob.addVar('chord0',
                    'c',
                    value=chord0_start,
                    lower=chord0_lower,
                    upper=chord0_upper)
    opt_prob.addVarGroup('dtwist',
                         n_elements - 1,
                         'c',
                         value=dtwist_start,
                         lower=dtwist_lower,
                         upper=dtwist_upper)
    opt_prob.addVarGroup('dchord',
                         n_elements - 1,
                         'c',
                         value=dchord_start,
                         lower=dchord_lower,
                         upper=dchord_upper)
    opt_prob.addObj('f')
    opt_prob.addCon('thrust', 'i')
    opt_prob.addCon('c_tip', 'i')
    opt_prob.addConGroup('c_lower', n_elements, 'i')
    opt_prob.addConGroup('c_upper', n_elements, 'i')
    print opt_prob

    pop_size = 300
    max_gen = 1100
    opt_method = 'nograd'
    nsga2 = NSGA2()
    nsga2.setOption('PrintOut', 2)
    nsga2.setOption('PopSize', pop_size)
    nsga2.setOption('maxGen', max_gen)
    nsga2.setOption('pCross_real', 0.85)
    nsga2.setOption('pMut_real', 0.2)
    nsga2.setOption('xinit', 1)
    fstr, xstr, inform = nsga2(opt_prob,
                               n_blades=n_blades,
                               radius=radius,
                               dy=dy,
                               dr=dr,
                               y=y,
                               r=r,
                               pitch=pitch,
                               airfoils=airfoils,
                               vehicle_weight=vehicle_weight,
                               max_chord=max_chord,
                               tip_loss=tip_loss,
                               mach_corr=mach_corr,
                               Cl_funs=Cl_funs,
                               Cd_funs=Cd_funs,
                               Cl_tables=Cl_tables,
                               Cd_tables=Cd_tables,
                               allowable_Re=allowable_Re,
                               opt_method=opt_method,
                               alt=alt,
                               v_inf=v_inf,
                               alpha0=alpha0,
                               mission_time=mission_time,
                               n_azi_elements=n_azi_elements,
                               pop_size=pop_size,
                               max_gen=max_gen,
                               lift_curve_info_dict=lift_curve_info_dict,
                               max_chord_tip=max_chord_tip)
    print opt_prob.solution(0)

    # opt_method = 'nograd'
    # xstart_alpso = np.concatenate((np.array([omega_start, twist0_start, chord0_start]), dtwist_start, dchord_start))
    # alpso = ALPSO()
    # alpso.setOption('xinit', 0)
    # alpso.setOption('SwarmSize', 200)
    # alpso.setOption('maxOuterIter', 100)
    # alpso.setOption('stopCriteria', 0)
    # fstr, xstr, inform = alpso(opt_prob, xstart=xstart_alpso,  n_blades=n_blades, n_elements=n_elements,
    #                            root_cutout=root_cutout, radius=radius, dy=dy, dr=dr, y=y, r=r, pitch=pitch,
    #                            airfoils=airfoils, thrust=thrust, max_chord=max_chord, tip_loss=tip_loss,
    #                            mach_corr=mach_corr, Cl_funs=Cl_funs, Cd_funs=Cd_funs, Cl_tables=Cl_tables,
    #                            Cd_tables=Cd_tables, allowable_Re=allowable_Re, opt_method=opt_method)
    # print opt_prob.solution(0)

    # opt_method = 'grad'
    # slsqp = SLSQP()
    # slsqp.setOption('IPRINT', 1)
    # slsqp.setOption('MAXIT', 1000)
    # slsqp.setOption('ACC', 1e-7)
    # fstr, xstr, inform = slsqp(opt_prob, sens_type='FD', n_blades=n_blades, n_elements=n_elements,
    #                            root_cutout=root_cutout, radius=radius, dy=dy, dr=dr, y=y, r=r, pitch=pitch,
    #                            airfoils=airfoils, thrust=thrust, max_chord=max_chord,
    #                            tip_loss=tip_loss, mach_corr=mach_corr, Cl_funs=Cl_funs, Cd_funs=Cd_funs,
    #                            Cl_tables=Cl_tables, Cd_tables=Cd_tables, allowable_Re=allowable_Re,
    #                            opt_method=opt_method, alt=alt)
    # print opt_prob.solution(0)

    def get_performance(o, c, t):
        chord_meters = c * radius
        prop = propeller.Propeller(t,
                                   chord_meters,
                                   radius,
                                   n_blades,
                                   r,
                                   y,
                                   dr,
                                   dy,
                                   airfoils=airfoils,
                                   Cl_tables=Cl_tables,
                                   Cd_tables=Cd_tables)
        quad = quadrotor.Quadrotor(prop, vehicle_weight)

        ff_kwargs = {
            'propeller': prop,
            'pitch': pitch,
            'n_azi_elements': n_azi_elements,
            'allowable_Re': allowable_Re,
            'Cl_funs': Cl_funs,
            'Cd_funs': Cd_funs,
            'tip_loss': tip_loss,
            'mach_corr': mach_corr,
            'alt': alt,
            'lift_curve_info_dict': lift_curve_info_dict
        }
        trim0 = np.array([alpha0, o])
        alpha_trim, omega_trim, converged = trim.trim(quad, v_inf, trim0,
                                                      ff_kwargs)
        T_ff, H_ff, P_ff = bemt.bemt_forward_flight(
            quad,
            pitch,
            omega_trim,
            alpha_trim,
            v_inf,
            n_azi_elements,
            alt=alt,
            tip_loss=tip_loss,
            mach_corr=mach_corr,
            allowable_Re=allowable_Re,
            Cl_funs=Cl_funs,
            Cd_funs=Cd_funs,
            lift_curve_info_dict=lift_curve_info_dict)

        dT_h, P_h = bemt.bemt_axial(prop,
                                    pitch,
                                    o,
                                    allowable_Re=allowable_Re,
                                    Cl_funs=Cl_funs,
                                    Cd_funs=Cd_funs,
                                    tip_loss=tip_loss,
                                    mach_corr=mach_corr,
                                    alt=alt)
        return sum(dT_h), P_h, T_ff, P_ff, alpha_trim, omega_trim

    omega = xstr[0]
    twist0 = xstr[1]
    chord0 = xstr[2]
    dtwist = xstr[3:3 + len(r) - 1]
    dchord = xstr[3 + len(r) - 1:]

    twist = calc_twist_dist(twist0, dtwist)
    chord = calc_chord_dist(chord0, dchord)

    print "chord = " + repr(chord)
    print "twist = " + repr(twist)

    # twist_base = calc_twist_dist(twist0_base, dtwist_base)
    # chord_base = calc_chord_dist(chord0_base, dchord_base)

    perf_opt = get_performance(omega, chord, twist)
    #perf_base = get_performance(omega_start, chord_base, twist_base)
    print "omega = " + str(omega * 60 / 2 / np.pi)
    print "Hover Thrust of optimized = " + str(perf_opt[0])
    print "Hover Power of optimized = " + str(perf_opt[1])
    print "FF Thrust of optimized = " + str(perf_opt[2])
    print "FF Power of optimized = " + str(perf_opt[3])
    print "Trim (alpha, omega) = (%f, %f)" % (perf_opt[4], perf_opt[5])
Example #6
0
def main():
    ###########################################
    # Define some values
    ###########################################
    n_blades = 2
    n_elements = 10
    radius = unit_conversion.in2m(9.6) / 2
    #radius = 0.1397
    root_cutout = 0.1 * radius
    dy = float(radius - root_cutout) / n_elements
    dr = float(1) / n_elements
    y = root_cutout + dy * np.arange(1, n_elements + 1)
    r = y / radius
    pitch = 0.0
    airfoils = (('SDA1075_494p', 0.0, 1.0), )
    #allowable_Re = []
    allowable_Re = [
        1000000., 500000., 250000., 100000., 90000., 80000., 70000., 60000.,
        50000., 40000., 30000., 20000., 10000.
    ]
    vehicle_weight = 12.455
    max_chord = 0.6
    alt = 0
    tip_loss = True
    mach_corr = False

    Cl_tables = {}
    Cd_tables = {}
    Clmax = {}
    # Get lookup tables
    if any(airfoil[0] != 'simple' for airfoil in airfoils):
        for airfoil in airfoils:
            Cl_table, Cd_table, Clmax = aero_coeffs.create_Cl_Cd_table(
                airfoil[0])

            Cl_tables[airfoil[0]] = Cl_table
            Cd_tables[airfoil[0]] = Cd_table
            Clmax[airfoil[0]] = Clmax

    # Create list of Cl functions. One for each Reynolds number. Cl_tables (and Cd_tables) will be empty for the
    # 'simple' case, therefore this will be skipped for the simple case. For the full table lookup case this will be
    # skipped because allowable_Re will be empty.
    Cl_funs = {}
    Cd_funs = {}
    lift_curve_info_dict = {}
    if Cl_tables and allowable_Re:
        Cl_funs = dict(
            zip(allowable_Re, [
                aero_coeffs.get_Cl_fun(Re, Cl_tables[airfoils[0][0]],
                                       Clmax[airfoils[0][0]][Re])
                for Re in allowable_Re
            ]))
        Cd_funs = dict(
            zip(allowable_Re, [
                aero_coeffs.get_Cd_fun(Re, Cd_tables[airfoils[0][0]])
                for Re in allowable_Re
            ]))
        lift_curve_info_dict = aero_coeffs.create_liftCurveInfoDict(
            allowable_Re, Cl_tables[airfoils[0][0]])

    ###########################################
    # Set design variable bounds
    ###########################################
    omega_start = 4250. * 2 * np.pi / 60
    chord_base = np.array([
        0.1198, 0.1128, 0.1436, 0.1689, 0.1775, 0.1782, 0.1773, 0.1782, 0.1790,
        0.1787, 0.1787, 0.1786, 0.1785, 0.1790, 0.1792, 0.1792, 0.1692, 0.0154
    ])
    chord_base = np.array(
        [chord_base[i] for i in [0, 2, 4, 6, 8, 10, 12, 14, 15, 17]])
    twist_base = np.array([
        42.481, 44.647, 41.154, 37.475, 34.027, 30.549, 27.875, 25.831, 23.996,
        22.396, 21.009, 19.814, 18.786, 17.957, 17.245, 16.657, 13.973, 2.117
    ]) * 2 * np.pi / 360
    twist_base = np.array(
        [twist_base[i] for i in [0, 2, 4, 6, 8, 10, 12, 14, 15, 17]])
    dtwist_base = np.array([
        twist_base[i + 1] - twist_base[i] for i in xrange(len(twist_base) - 1)
    ])
    dchord_base = np.array([
        chord_base[i + 1] - chord_base[i] for i in xrange(len(chord_base) - 1)
    ])
    twist0_base = twist_base[0]
    chord0_base = chord_base[0]

    chord_start = chord_base
    twist_start = twist_base
    dtwist_start = dtwist_base
    dchord_start = dchord_base
    twist0_start = twist0_base
    chord0_start = chord0_base

    # chord = np.array([8.92386048e-02, 1.73000845e-01, 2.70523039e-01, 2.71542807e-01, 2.78749355e-01, 2.36866151e-01,
    #                   2.04103526e-01, 1.37456074e-01, 8.68094589e-02, 1.05601135e-04])
    # twist = np.array([0.00161645, 0.15105685, 0.28791442, 0.31577392, 0.28644651, 0.27418749, 0.24854514, 0.21812646,
    #                   0.19802027, 0.14972058])
    # omega_start = 3184.41320387 * 2*np.pi/60
    # chord_start = chord
    # twist_start = twist
    # dchord_start = np.array([chord[i+1]-chord[i] for i in xrange(len(chord)-1)])
    # dtwist_start = np.array([twist[i+1]-twist[i] for i in xrange(len(twist)-1)])
    # twist0_start = twist[0]
    # chord0_start = chord[0]

    ## Initialize everything to zeros
    # dtwist_start = np.zeros(n_elements-1)
    # dchord_start = np.zeros(n_elements-1)
    # twist0_start = 0.0
    # chord0_start = 0.0

    omega_lower = 2000 * 2 * np.pi / 60
    omega_upper = 8000.0 * 2 * np.pi / 60

    twist0_lower = 0.0 * 2 * np.pi / 360
    twist0_upper = 60. * 2 * np.pi / 360

    chord0_upper = 0.1198
    chord0_lower = 0.05

    dtwist_lower = -10.0 * 2 * np.pi / 360
    dtwist_upper = 10.0 * 2 * np.pi / 360
    dchord_lower = -0.1
    dchord_upper = 0.1

    opt_prob = Optimization('Rotor in Hover', objfun)
    opt_prob.addVar('omega',
                    'c',
                    value=omega_start,
                    lower=omega_lower,
                    upper=omega_upper)
    opt_prob.addVar('twist0',
                    'c',
                    value=twist0_start,
                    lower=twist0_lower,
                    upper=twist0_upper)
    opt_prob.addVar('chord0',
                    'c',
                    value=chord0_start,
                    lower=chord0_lower,
                    upper=chord0_upper)
    opt_prob.addVarGroup('dtwist',
                         n_elements - 1,
                         'c',
                         value=dtwist_start,
                         lower=dtwist_lower,
                         upper=dtwist_upper)
    opt_prob.addVarGroup('dchord',
                         n_elements - 1,
                         'c',
                         value=dchord_start,
                         lower=dchord_lower,
                         upper=dchord_upper)
    opt_prob.addObj('f')
    opt_prob.addCon('thrust', 'i')
    opt_prob.addConGroup('c_lower', n_elements, 'i')
    opt_prob.addConGroup('c_upper', n_elements, 'i')
    print opt_prob

    opt_method = 'nograd'
    nsga2 = NSGA2()
    nsga2.setOption('PrintOut', 2)
    nsga2.setOption('PopSize', 300)
    nsga2.setOption('maxGen', 1100)
    nsga2.setOption('pCross_real', 0.85)
    nsga2.setOption('xinit', 1)
    fstr, xstr, inform = nsga2(opt_prob,
                               n_blades=n_blades,
                               n_elements=n_elements,
                               root_cutout=root_cutout,
                               radius=radius,
                               dy=dy,
                               dr=dr,
                               y=y,
                               r=r,
                               pitch=pitch,
                               airfoils=airfoils,
                               vehicle_weight=vehicle_weight,
                               max_chord=max_chord,
                               tip_loss=tip_loss,
                               mach_corr=mach_corr,
                               Cl_funs=Cl_funs,
                               Cd_funs=Cd_funs,
                               Cl_tables=Cl_tables,
                               Cd_tables=Cd_tables,
                               allowable_Re=allowable_Re,
                               opt_method=opt_method,
                               alt=alt,
                               lift_curve_info_dict=lift_curve_info_dict)
    print opt_prob.solution(0)

    # opt_method = 'nograd'
    # xstart_alpso = np.concatenate((np.array([omega_start, twist0_start, chord0_start]), dtwist_start, dchord_start))
    # alpso = ALPSO()
    # alpso.setOption('xinit', 0)
    # alpso.setOption('SwarmSize', 200)
    # alpso.setOption('maxOuterIter', 100)
    # alpso.setOption('stopCriteria', 0)
    # fstr, xstr, inform = alpso(opt_prob, xstart=xstart_alpso,  n_blades=n_blades, n_elements=n_elements,
    #                            root_cutout=root_cutout, radius=radius, dy=dy, dr=dr, y=y, r=r, pitch=pitch,
    #                            airfoils=airfoils, thrust=thrust, max_chord=max_chord, tip_loss=tip_loss,
    #                            mach_corr=mach_corr, Cl_funs=Cl_funs, Cd_funs=Cd_funs, Cl_tables=Cl_tables,
    #                            Cd_tables=Cd_tables, allowable_Re=allowable_Re, opt_method=opt_method)
    # print opt_prob.solution(0)

    # opt_method = 'grad'
    # slsqp = SLSQP()
    # slsqp.setOption('IPRINT', 1)
    # slsqp.setOption('MAXIT', 1000)
    # slsqp.setOption('ACC', 1e-7)
    # fstr, xstr, inform = slsqp(opt_prob, sens_type='FD', n_blades=n_blades, n_elements=n_elements,
    #                            root_cutout=root_cutout, radius=radius, dy=dy, dr=dr, y=y, r=r, pitch=pitch,
    #                            airfoils=airfoils, thrust=thrust, max_chord=max_chord,
    #                            tip_loss=tip_loss, mach_corr=mach_corr, Cl_funs=Cl_funs, Cd_funs=Cd_funs,
    #                            Cl_tables=Cl_tables, Cd_tables=Cd_tables, allowable_Re=allowable_Re,
    #                            opt_method=opt_method, alt=alt)
    # print opt_prob.solution(0)

    def get_performance(o, c, t):
        chord_meters = c * radius
        prop = propeller.Propeller(t,
                                   chord_meters,
                                   radius,
                                   n_blades,
                                   r,
                                   y,
                                   dr,
                                   dy,
                                   airfoils=airfoils,
                                   Cl_tables=Cl_tables,
                                   Cd_tables=Cd_tables)

        return bemt.bemt_axial(prop,
                               pitch,
                               o,
                               allowable_Re=allowable_Re,
                               Cl_funs=Cl_funs,
                               Cd_funs=Cd_funs,
                               tip_loss=tip_loss,
                               mach_corr=mach_corr,
                               output='long',
                               alt=alt)

    omega = xstr[0]
    twist0 = xstr[1]
    chord0 = xstr[2]
    dtwist = xstr[3:3 + len(r) - 1]
    dchord = xstr[3 + len(r) - 1:]

    twist = calc_twist_dist(twist0, dtwist)
    chord = calc_chord_dist(chord0, dchord)

    print "chord = " + repr(chord)
    print "twist = " + repr(twist)

    # twist_base = calc_twist_dist(twist0_base, dtwist_base)
    # chord_base = calc_chord_dist(chord0_base, dchord_base)

    perf_opt = get_performance(omega, chord, twist)
    #perf_base = get_performance(omega_start, chord_base, twist_base)
    print "omega = " + str(omega * 60 / 2 / np.pi)
    print "Thrust of optimized = " + str(sum(perf_opt[0]))
    print "Power of optimized = " + str(perf_opt[1])
    # print "Omega base = " + str(omega_start*60/2/np.pi)
    # print "Thrust of base = " + str(sum(perf_base[0]))
    # print "Power of base = " + str(sum(perf_base[1]))

    plt.figure(1)
    plt.plot(r, chord_start, '-b')
    plt.plot(r, chord, '-r')
    plt.xlabel('radial location')
    plt.ylabel('c/R')
    plt.legend(['start', 'opt'])

    plt.figure(2)
    plt.plot(r, twist_start * 180 / np.pi, '-b')
    plt.plot(r, twist * 180 / np.pi, '-r')
    plt.xlabel('radial location')
    plt.ylabel('twist')
    plt.legend(['start', 'opt'])

    plt.show()