def test_numpy_compare(self, n): a = np.array([[0.1231101, 0.72381381], [0.28748201, 0.43036511]]).astype(config.floatX) A = matrix("A", dtype=config.floatX) A.tag.test_value = a Q = matrix_power(A, n) n_p = np.linalg.matrix_power(a, n) assert np.allclose(n_p, Q.get_test_value())
def test_non_square_matrix(self): A = matrix("A", dtype=config.floatX) Q = matrix_power(A, 3) f = function([A], [Q]) a = np.array([ [0.47497769, 0.81869379], [0.74387558, 0.31780172], [0.54381007, 0.28153101], ]).astype(config.floatX) with pytest.raises(ValueError): f(a)