Example #1
0
    def test_pooling_with_tensor_vars(self):
        x = ftensor4()
        window_size = ivector()
        stride = ivector()
        padding = ivector()
        data = np.random.normal(0, 1, (1, 1, 5, 5)).astype("float32")

        # checking variable params vs fixed params
        for ignore_border in [True, False]:
            for mode in ["max", "sum", "average_inc_pad", "average_exc_pad"]:
                y = pool_2d(x, window_size, ignore_border, stride, padding,
                            mode)
                dx = aesara.gradient.grad(y.sum(), x)
                var_fct = aesara.function([x, window_size, stride, padding],
                                          [y, dx])
                for ws in (4, 2, 5):
                    for st in (2, 3):
                        for pad in (0, 1):
                            if (pad > st or st > ws
                                    or (pad != 0 and not ignore_border) or
                                (mode == "average_exc_pad" and pad != 0)):
                                continue
                            y = pool_2d(x, (ws, ws), ignore_border, (st, st),
                                        (pad, pad), mode)
                            dx = aesara.gradient.grad(y.sum(), x)
                            fix_fct = aesara.function([x], [y, dx])
                            var_y, var_dx = var_fct(data, (ws, ws), (st, st),
                                                    (pad, pad))
                            fix_y, fix_dx = fix_fct(data)
                            utt.assert_allclose(var_y, fix_y)
                            utt.assert_allclose(var_dx, fix_dx)
Example #2
0
    def test_max_pool_2d_2D(self):
        rng = np.random.RandomState(utt.fetch_seed())
        maxpoolshps = ((1, 1), (3, 2))
        imval = rng.rand(4, 5)
        images = dmatrix()

        for maxpoolshp, ignore_border, mode in product(
                maxpoolshps,
            [True, False],
            ["max", "sum", "average_inc_pad", "average_exc_pad"],
        ):
            # print 'maxpoolshp =', maxpoolshp
            # print 'ignore_border =', ignore_border
            numpy_output_val = self.numpy_max_pool_2d(imval,
                                                      maxpoolshp,
                                                      ignore_border,
                                                      mode=mode)
            output = pool_2d(images, maxpoolshp, ignore_border, mode=mode)
            output_val = function([images], output)(imval)
            utt.assert_allclose(output_val, numpy_output_val)

            def mp(input):
                return pool_2d(input, maxpoolshp, ignore_border, mode=mode)

            utt.verify_grad(mp, [imval], rng=rng)
Example #3
0
    def test_DownsampleFactorMax_hessian(self):
        # Example provided by Frans Cronje, see
        # https://groups.google.com/d/msg/theano-users/qpqUy_3glhw/JMwIvlN5wX4J
        x_vec = vector("x")
        z = aet.dot(x_vec.dimshuffle(0, "x"), x_vec.dimshuffle("x", 0))
        y = pool_2d(input=z, ws=(2, 2), ignore_border=True)
        C = aet.exp(aet_sum(y))

        grad_hess = aesara.gradient.hessian(cost=C, wrt=x_vec)
        fn_hess = function(inputs=[x_vec], outputs=grad_hess)

        # The value has been manually computed from the theoretical gradient,
        # and confirmed by the implementation.

        assert np.allclose(fn_hess([1, 2]), [[0.0, 0.0], [0.0, 982.7667]])
Example #4
0
    def test_max_pool_2d_3D(self):
        rng = np.random.RandomState(utt.fetch_seed())
        maxpoolshps = [(1, 2)]
        imval = rng.rand(2, 3, 4)
        images = dtensor3()

        for maxpoolshp, ignore_border, mode in product(
                maxpoolshps,
            [True, False],
            ["max", "sum", "average_inc_pad", "average_exc_pad"],
        ):
            # print 'maxpoolshp =', maxpoolshp
            # print 'ignore_border =', ignore_border
            numpy_output_val = self.numpy_max_pool_2d(imval, maxpoolshp,
                                                      ignore_border, mode)
            output = pool_2d(images, maxpoolshp, ignore_border, mode=mode)
            output_val = function([images], output)(imval)
            utt.assert_allclose(output_val, numpy_output_val)
Example #5
0
    def test_DownsampleFactorMax(self):
        rng = np.random.RandomState(utt.fetch_seed())
        # maxpool, input size
        examples = (
            ((2, ), (16, )),
            (
                (2, ),
                (
                    4,
                    16,
                ),
            ),
            (
                (2, ),
                (
                    4,
                    2,
                    16,
                ),
            ),
            ((1, 1), (4, 2, 16, 16)),
            ((2, 2), (4, 2, 16, 16)),
            ((3, 3), (4, 2, 16, 16)),
            ((3, 2), (4, 2, 16, 16)),
            ((3, 2, 2), (3, 2, 16, 16, 16)),
            ((2, 2, 3, 2), (3, 2, 6, 6, 6, 5)),
        )

        for example, ignore_border, mode in product(
                examples,
            [True, False],
            ["max", "sum", "average_inc_pad", "average_exc_pad"],
        ):
            (maxpoolshp, inputsize) = example
            imval = rng.rand(*inputsize)
            images = aesara.shared(imval)

            # Pure Numpy computation
            numpy_output_val = self.numpy_max_pool_nd(imval,
                                                      maxpoolshp,
                                                      ignore_border,
                                                      mode=mode)

            # The pool_2d or pool_3d helper methods
            if len(maxpoolshp) == 2:
                output = pool_2d(images, maxpoolshp, ignore_border, mode=mode)
                f = function(
                    [],
                    [
                        output,
                    ],
                )
                output_val = f()
                utt.assert_allclose(output_val, numpy_output_val)
            elif len(maxpoolshp) == 3:
                output = pool_3d(images, maxpoolshp, ignore_border, mode=mode)
                f = function(
                    [],
                    [
                        output,
                    ],
                )
                output_val = f()
                utt.assert_allclose(output_val, numpy_output_val)

            # Pool op
            maxpool_op = Pool(ndim=len(maxpoolshp),
                              ignore_border=ignore_border,
                              mode=mode)(images, maxpoolshp)

            output_shape = Pool.out_shape(
                imval.shape,
                maxpoolshp,
                ndim=len(maxpoolshp),
                ignore_border=ignore_border,
            )
            utt.assert_allclose(np.asarray(output_shape),
                                numpy_output_val.shape)
            f = function([], maxpool_op)
            output_val = f()
            utt.assert_allclose(output_val, numpy_output_val)
Example #6
0
 def mp(input):
     return pool_2d(input, maxpoolshp, ignore_border, mode=mode)