Example #1
0
    def test_sparseblockouter(self):
        o = tensor.ftensor4()
        x = tensor.ftensor3()
        y = tensor.ftensor3()
        xIdx = tensor.imatrix()
        yIdx = tensor.imatrix()

        out = self.outer_op(o, x, y, xIdx, yIdx)

        f = aesara.function(
            [o, x, y, xIdx, yIdx], out, on_unused_input="warn", mode=self.mode
        )

        (
            o_val,
            x_val,
            y_val,
            xIdx_val,
            yIdx_val,
        ) = self.outer_data()

        th_out = f(o_val, x_val, y_val, xIdx_val, yIdx_val)
        ref_out = self.outer_numpy(o_val, x_val, y_val, xIdx_val, yIdx_val)

        utt.assert_allclose(ref_out, th_out)
Example #2
0
    def test_sparseblockgemvF(self):
        # Test the fortan order for W (which can happen in the grad for some
        # graphs).

        b = tensor.fmatrix()
        W = tensor.ftensor4()
        h = tensor.ftensor3()
        iIdx = tensor.imatrix()
        oIdx = tensor.imatrix()

        o = self.gemv_op(
            b.take(oIdx, axis=0),
            tensor.DimShuffle((False, False, False, False), (0, 1, 3, 2))(
                tensor.as_tensor_variable(W)
            ),
            h,
            iIdx,
            oIdx,
        )

        f = aesara.function([W, h, iIdx, b, oIdx], o, mode=self.mode)

        W_val, h_val, iIdx_val, b_val, oIdx_val = self.gemv_data()

        th_out = f(np.swapaxes(W_val, 2, 3), h_val, iIdx_val, b_val, oIdx_val)
        ref_out = self.gemv_numpy(
            b_val.take(oIdx_val, axis=0), W_val, h_val, iIdx_val, oIdx_val
        )

        utt.assert_allclose(ref_out, th_out)
Example #3
0
    def test_outer_infershape(self):
        o = tensor.ftensor4()
        x = tensor.ftensor3()
        y = tensor.ftensor3()
        xIdx = tensor.imatrix()
        yIdx = tensor.imatrix()

        self._compile_and_check(
            [o, x, y, xIdx, yIdx],
            [self.outer_op(o, x, y, xIdx, yIdx)],
            self.outer_data(),
            self.outer_class,
        )
Example #4
0
    def test_gemv_infershape(self):
        b = tensor.fmatrix()
        W = tensor.ftensor4()
        h = tensor.ftensor3()
        iIdx = tensor.imatrix()
        oIdx = tensor.imatrix()

        self._compile_and_check(
            [W, h, iIdx, b, oIdx],
            [self.gemv_op(b.take(oIdx, axis=0), W, h, iIdx, oIdx)],
            self.gemv_data(),
            self.gemv_class,
        )
Example #5
0
    def test_dot_infershape(self):
        b = tensor.fmatrix()
        W = tensor.ftensor4()
        h = tensor.ftensor3()
        iIdx = tensor.imatrix()
        oIdx = tensor.imatrix()

        self._compile_and_check(
            [W, h, iIdx, b, oIdx],
            [sparse_block_dot(W, h, iIdx, b, oIdx)],
            self.gemv_data(),
            self.gemv_class,
        )
Example #6
0
    def test_sparseblockgemv_grad_shape(self):
        b = tensor.fmatrix()
        W = tensor.ftensor4()
        h = tensor.ftensor3()
        iIdx = tensor.imatrix()
        oIdx = tensor.imatrix()

        o = self.gemv_op(b.take(oIdx, axis=0), W, h, iIdx, oIdx)
        go = aesara.grad(o.sum(), [b, W, h])

        f = aesara.function([W, h, iIdx, b, oIdx], go, mode=self.mode)

        W_val, h_val, iIdx_val, b_val, oIdx_val = self.gemv_data()

        # just make sure that it runs correcly and all the shapes are ok.
        b_g, W_g, h_g = f(W_val, h_val, iIdx_val, b_val, oIdx_val)

        assert b_g.shape == b_val.shape
        assert h_g.shape == h_val.shape
        assert W_g.shape == W_val.shape
Example #7
0
    def test_sparseblockgemv(self):
        # Compares the numpy and aesara versions of sparseblockgemv.

        b = tensor.fmatrix()
        W = tensor.ftensor4()
        h = tensor.ftensor3()
        iIdx = tensor.imatrix()
        oIdx = tensor.imatrix()

        o = self.gemv_op(b.take(oIdx, axis=0), W, h, iIdx, oIdx)

        f = aesara.function([W, h, iIdx, b, oIdx], o, mode=self.mode)

        W_val, h_val, iIdx_val, b_val, oIdx_val = self.gemv_data()

        th_out = f(W_val, h_val, iIdx_val, b_val, oIdx_val)
        ref_out = self.gemv_numpy(
            b_val.take(oIdx_val, axis=0), W_val, h_val, iIdx_val, oIdx_val
        )

        utt.assert_allclose(ref_out, th_out)
    def test_infer_shape(self):
        shape = (100, 40, 6, 3)
        images = np.ones(shape).astype("float32")
        x = tt.ftensor4()
        self._compile_and_check(
            [x],
            [images2neibs(x, neib_shape=(2, 1), mode="valid")],
            [images],
            Images2Neibs,
        )
        self._compile_and_check(
            [x],
            [images2neibs(x, neib_shape=(2, 3), mode="valid")],
            [images],
            Images2Neibs,
        )
        shape = (100, 40, 5, 4)
        images = np.ones(shape).astype("float32")
        x = tt.ftensor4()
        self._compile_and_check(
            [x],
            [images2neibs(x, neib_shape=(2, 1), mode="ignore_borders")],
            [images],
            Images2Neibs,
        )
        shape = (100, 40, 5, 3)
        images = np.ones(shape).astype("float32")
        x = tt.ftensor4()
        self._compile_and_check(
            [x],
            [images2neibs(x, neib_shape=(2, 3), mode="ignore_borders")],
            [images],
            Images2Neibs,
        )

        shape = (100, 40, 6, 7)
        images = np.ones(shape).astype("float32")
        x = tt.ftensor4()
        self._compile_and_check(
            [x],
            [images2neibs(x, neib_shape=(2, 2), mode="ignore_borders")],
            [images],
            Images2Neibs,
        )
        shape = (100, 40, 5, 10)
        images = np.ones(shape).astype("float32")
        x = tt.ftensor4()
        self._compile_and_check(
            [x],
            [images2neibs(x, neib_shape=(3, 3), mode="wrap_centered")],
            [images],
            Images2Neibs,
        )
        shape = (100, 40, 6, 4)
        images = np.ones(shape).astype("float32")
        x = tt.ftensor4()
        self._compile_and_check(
            [x],
            [images2neibs(x, neib_shape=(2, 1), mode="half")],
            [images],
            Images2Neibs,
        )
        self._compile_and_check(
            [x],
            [images2neibs(x, neib_shape=(2, 3), mode="half")],
            [images],
            Images2Neibs,
        )
        shape = (100, 40, 6, 5)
        images = np.ones(shape).astype("float32")
        x = tt.ftensor4()
        self._compile_and_check(
            [x],
            [images2neibs(x, neib_shape=(2, 1), mode="full")],
            [images],
            Images2Neibs,
        )
        self._compile_and_check(
            [x],
            [images2neibs(x, neib_shape=(2, 3), mode="full")],
            [images],
            Images2Neibs,
        )
 def test_GpuCumOp4D(self, mode):
     op_class = partial(self.op_class, mode=mode)
     # Should not use the GPU version.
     x = tt.ftensor4("x")
     f = aesara.function([x], op_class(axis=1)(x), mode=self.mode)
     assert [n for n in f.maker.fgraph.toposort() if isinstance(n.op, CumOp)]