def test_use_numpy_strict_false(self):

        # here the value is perfect, and we're not strict about it,
        # so creation should work
        u = SharedVariable(
            name="u",
            type=Tensor(broadcastable=[False], dtype="float64"),
            value=np.asarray([1.0, 2.0]),
            strict=False,
        )

        # check that assignments to value are cast properly
        u.set_value([3, 4])
        assert type(u.get_value()) is np.ndarray
        assert str(u.get_value(borrow=True).dtype) == "float64"
        assert np.all(u.get_value() == [3, 4])

        # check that assignments of nonsense fail
        try:
            u.set_value("adsf")
            assert 0
        except ValueError:
            pass

        # check that an assignment of a perfect value results in no copying
        uval = aesara._asarray([5, 6, 7, 8], dtype="float64")
        u.set_value(uval, borrow=True)
        assert u.get_value(borrow=True) is uval
Example #2
0
 def perform(self, node, inp, out):
     multi_index, dims = inp[:-1], inp[-1]
     res = np.ravel_multi_index(multi_index,
                                dims,
                                mode=self.mode,
                                order=self.order)
     out[0][0] = aesara._asarray(res, node.outputs[0].dtype)
Example #3
0
 def perform(self, node, inp, out_, params):
     (x,) = inp
     (out,) = out_
     if out[0] is None:
         out[0] = aesara._asarray(x.shape[self.i], dtype="int64")
     else:
         out[0][...] = x.shape[self.i]
    def perform(self, node, inputs, out_):
        rout, out = out_
        # Use self.fn to draw shape worth of random numbers.
        # Numbers are drawn from r if self.inplace is True, and from a
        # copy of r if self.inplace is False
        r, shape, args = inputs[0], inputs[1], inputs[2:]
        assert type(r) == np.random.RandomState, (type(r), r)

        # If shape == [], that means no shape is enforced, and numpy is
        # trusted to draw the appropriate number of samples, numpy uses
        # shape "None" to represent that. Else, numpy expects a tuple.
        # TODO: compute the appropriate shape, and pass it to numpy.
        if len(shape) == 0:
            shape = None
        else:
            shape = tuple(shape)

        if shape is not None and self.outtype.ndim != len(
                shape) + self.ndim_added:
            raise ValueError("Shape mismatch: self.outtype.ndim (%i) !="
                             " len(shape) (%i) + self.ndim_added (%i)" %
                             (self.outtype.ndim, len(shape), self.ndim_added))
        if not self.inplace:
            r = copy(r)
        rout[0] = r
        rval = self.exec_fn(r, *(args + [shape]))
        if (not isinstance(rval, np.ndarray)
                or str(rval.dtype) != node.outputs[1].type.dtype):
            rval = aesara._asarray(rval, dtype=node.outputs[1].type.dtype)

        # When shape is None, numpy has a tendency to unexpectedly
        # return a scalar instead of a higher-dimension array containing
        # only one element. This value should be reshaped
        if shape is None and rval.ndim == 0 and self.outtype.ndim > 0:
            rval = rval.reshape([1] * self.outtype.ndim)

        if len(rval.shape) != self.outtype.ndim:
            raise ValueError('Shape mismatch: "out" should have dimension %i,'
                             ' but the value produced by "perform" has'
                             " dimension %i" %
                             (self.outtype.ndim, len(rval.shape)))

        # Check the output has the right shape
        if shape is not None:
            if self.ndim_added == 0 and shape != rval.shape:
                raise ValueError(
                    'Shape mismatch: "out" should have shape %s, but the'
                    ' value produced by "perform" has shape %s' %
                    (shape, rval.shape))
            elif self.ndim_added > 0 and shape != rval.shape[:-self.ndim_added]:
                raise ValueError(
                    'Shape mismatch: "out" should have shape starting with'
                    " %s (plus %i extra dimensions), but the value produced"
                    ' by "perform" has shape %s' %
                    (shape, self.ndim_added, rval.shape))

        out[0] = rval
def test_XOR_inplace():
    dtype = [
        "int8",
        "int16",
        "int32",
        "int64",
    ]

    for dtype in dtype:
        x, y = vector(dtype=dtype), vector(dtype=dtype)
        l = _asarray([0, 0, 1, 1], dtype=dtype)
        r = _asarray([0, 1, 0, 1], dtype=dtype)
        ix = x
        ix = xor_inplace(ix, y)
        gn = inplace_func([x, y], ix)
        _ = gn(l, r)
        # test the in-place stuff
        assert np.all(l == np.asarray([0, 1, 1, 0])), l
Example #6
0
def _numpy_true_div(x, y):
    # Performs true division, and cast the result in the type we expect.
    #
    # We define that function so we can use it in TrueDivTester.expected,
    # because simply calling np.true_divide could cause a dtype mismatch.
    out = np.true_divide(x, y)
    # Use floatX as the result of int / int
    if x.dtype in tensor.discrete_dtypes and y.dtype in tensor.discrete_dtypes:
        out = aesara._asarray(out, dtype=config.floatX)
    return out
Example #7
0
 def perform(self, node, inp, out):
     indices, dims = inp
     res = np.unravel_index(indices, dims, order=self.order)
     assert len(res) == len(out)
     for i in range(len(out)):
         ret = aesara._asarray(res[i], node.outputs[0].dtype)
         if ret.base is not None:
             # NumPy will return a view when it can.
             # But we don't want that.
             ret = ret.copy()
         out[i][0] = ret
Example #8
0
 def perform(self, node, inputs, output_storage):
     a = inputs[0]
     axis = inputs[1]
     if axis is not None:
         if axis != int(axis):
             raise ValueError("sort axis must be an integer or None")
         axis = int(axis)
     z = output_storage[0]
     z[0] = aesara._asarray(
         np.argsort(a, axis, self.kind, self.order), dtype=node.outputs[0].dtype
     )
Example #9
0
    def test_0(self):
        for op_fn in [_convert_to_int32, _convert_to_float32, _convert_to_float64]:
            for type_fn in bvector, ivector, fvector, dvector:
                x = type_fn()
                f = function([x], op_fn(x))

                xval = aesara._asarray(np.random.rand(10) * 10, dtype=type_fn.dtype)
                yval = f(xval)
                assert (
                    str(yval.dtype)
                    == op_fn.scalar_op.output_types_preference.spec[0].dtype
                )
    def test_gemv_dimensions(self, dtype="float32"):
        alpha = aesara.shared(aesara._asarray(1.0, dtype=dtype), name="alpha")
        beta = aesara.shared(aesara._asarray(1.0, dtype=dtype), name="beta")

        z = beta * self.y + alpha * tensor.dot(self.A, self.x)
        f = aesara.function([self.A, self.x, self.y], z, mode=self.mode)

        # Matrix value
        A_val = np.ones((5, 3), dtype=dtype)
        # Different vector length
        ones_3 = np.ones(3, dtype=dtype)
        ones_4 = np.ones(4, dtype=dtype)
        ones_5 = np.ones(5, dtype=dtype)
        ones_6 = np.ones(6, dtype=dtype)

        f(A_val, ones_3, ones_5)
        f(A_val[::-1, ::-1], ones_3, ones_5)
        with pytest.raises(ValueError):
            f(A_val, ones_4, ones_5)
        with pytest.raises(ValueError):
            f(A_val, ones_3, ones_6)
        with pytest.raises(ValueError):
            f(A_val, ones_4, ones_6)
Example #11
0
    def test_givens(self):
        x = shared(0)
        assign = pfunc([], x, givens={x: 3})
        assert assign() == 3
        assert x.get_value(borrow=True) == 0

        y = tensor.ivector()
        f = pfunc([y], (y * x), givens={x: 6})
        assert np.all(f([1, 1, 1]) == [6, 6, 6])
        assert x.get_value() == 0

        z = tensor.ivector()
        c = z * y
        f = pfunc([y], (c + 7),
                  givens={z: aesara._asarray([4, 4, 4], dtype="int32")})
        assert np.all(f([1, 1, 1]) == [11, 11, 11])
        assert x.get_value() == 0
 def as_ar(a):
     return aesara._asarray(a, dtype="int32")
Example #13
0
    def filter_inplace(self,
                       data,
                       old_data,
                       strict=False,
                       allow_downcast=None):
        if isinstance(data,
                      gpuarray.GpuArray) and data.typecode == self.typecode:
            # This is just to make this condition not enter the
            # following branches
            pass
        elif strict:
            if not isinstance(data, gpuarray.GpuArray):
                raise TypeError("%s expected a GpuArray object." % self, data,
                                type(data))
            if self.typecode != data.typecode:
                raise TypeError("%s expected typecode %d (dtype %s), "
                                "got %d (dtype %s)." %
                                (self, self.typecode, self.dtype,
                                 data.typecode, str(data.dtype)))
            if self.context != data.context:
                raise TypeError("data context does not match type context")
            # fallthrough to ndim check
        elif allow_downcast or (allow_downcast is None and type(data) == float
                                and self.dtype == config.floatX):
            if not isinstance(data, gpuarray.GpuArray):
                data = np.array(data,
                                dtype=self.dtype,
                                copy=False,
                                ndmin=len(self.broadcastable))
            else:
                data = gpuarray.array(
                    data,
                    dtype=self.typecode,
                    copy=False,
                    ndmin=len(self.broadcastable),
                    context=self.context,
                )
        else:
            if not hasattr(data, "dtype"):
                converted_data = aesara._asarray(data, self.dtype)
                # We use the `values_eq` static function from TensorType
                # to handle NaN values.
                if TensorType.values_eq(np.asarray(data),
                                        converted_data,
                                        force_same_dtype=False):
                    data = converted_data

            up_dtype = scalar.upcast(self.dtype, data.dtype)
            if up_dtype == self.dtype:
                if not isinstance(data, gpuarray.GpuArray):
                    data = np.array(data, dtype=self.dtype, copy=False)
                else:
                    data = gpuarray.array(data, dtype=self.dtype, copy=False)
            else:
                raise TypeError("%s cannot store a value of dtype %s "
                                "without risking loss of precision." %
                                (self, data.dtype))

        if self.ndim != data.ndim:
            raise TypeError(
                "Wrong number of dimensions: expected %s, "
                "got %s with shape %s." % (self.ndim, data.ndim, data.shape),
                data,
            )
        shp = data.shape
        for i, b in enumerate(self.broadcastable):
            if b and shp[i] != 1:
                raise TypeError(
                    "Non-unit value on shape on a broadcastable"
                    " dimension.",
                    shp,
                    self.broadcastable,
                )
        if not isinstance(data, gpuarray.GpuArray):
            if (old_data is not None and old_data.shape == data.shape and (
                    # write() only work if the destitation is contiguous.
                    old_data.flags["C_CONTIGUOUS"]
                    or old_data.flags["F_CONTIGUOUS"])):
                old_data.write(data)
                data = old_data
            else:
                data = pygpu.array(data, context=self.context)
        return data
Example #14
0
 def perform(self, node, inp, out_):
     (x,) = inp
     (out,) = out_
     out[0] = aesara._asarray(x.shape, dtype="int64")