Example #1
0
    def test_binning_nominal(self):
        X = [[1], [2], [3], [4], [5], [6], [7], [8], [9], [10]]
        y = [1, 2, 3]
        data_info = ['numeric']
        dataset = Dataset(X, y, data_info)

        expected_X = [[1, 0], [2, 1], [3, 2], [4, 3], [5, 4], [6, 5], [7, 6],
                      [8, 7], [9, 8], [10, 9]]

        transformation = t.TransformationBinningNominal()
        d, tc = transformation.transform(dataset)
        np.testing.assert_equal(d.data_info, ['numeric'] + ['nominal'])
        np.testing.assert_equal(d.X, expected_X)

        expected_X = [[10, 9], [10, 9], [3, 2], [3, 2], [4, 3], [4, 3], [5, 4],
                      [5, 4], [6, 5], [6, 5]]

        X = [[10], [10], [3], [3], [4], [4], [5], [5], [6], [6]]
        y = [1, 2, 3]
        data_info = ['numeric']
        dataset = Dataset(X, y, data_info)

        d, _ = tc.transform(dataset)
        np.testing.assert_equal(d.data_info, ['numeric'] + ['nominal'])
        np.testing.assert_equal(d.X, expected_X)

        self.assertNotEqual(transformation, tc)
        self.assertTrue(transformation.binner is None)
        self.assertTrue(tc.binner is not None)
Example #2
0
    def test_ohe(self):
        X = [[1, 0.5, 'red'], [1, 0.5, 'blue'], [1, 1, 'red'],
             ['?', 0.5, 'red'], [2, 0.5, 'red']]
        y = [1, 2, 1, 1, 2]
        data_info = ['numeric', 'numeric', 'nominal']

        dataset = Dataset(X, y, data_info, '?', '%Y-%m-%d', True)
        transformation = t.TransformationOneHotEncoder()
        d, tc = transformation.transform(dataset)

        expected_X = [[1, 0.5, 1, 0], [1, 0.5, 0, 1], [1, 1, 1, 0],
                      [0, 0.5, 1, 0], [2, 0.5, 1, 0]]

        self.assertEqual(d.data_info,
                         ['numeric', 'numeric', 'nominal', 'boolean'])
        np.testing.assert_equal(d.X, expected_X)

        X = [[1, 0.5, 'red'], [1, 0.5, 'red'], [1, 1, 'blue'],
             ['?', 0.5, 'red'], [2, 0.5, 'red']]
        y = [1, 2, 1, 1, 2]
        data_info = ['numeric', 'numeric', 'nominal']

        dataset = Dataset(X, y, data_info, '?', '%Y-%m-%d', True)
        d, _ = tc.transform(dataset)

        expected_X = [[1, 0.5, 1, 0], [1, 0.5, 1, 0], [1, 1, 0, 1],
                      [0, 0.5, 1, 0], [2, 0.5, 1, 0]]

        self.assertEqual(d.data_info,
                         ['numeric', 'numeric', 'nominal', 'boolean'])
        np.testing.assert_equal(d.X, expected_X)

        self.assertNotEqual(transformation, tc)
        self.assertTrue(transformation.encoder is None)
        self.assertTrue(tc.encoder is not None)
Example #3
0
    def test_binning_mean(self):
        X = [[1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12],
             [13], [14], [15], [16], [17], [18], [19], [20]]
        y = [1, 2, 3]
        data_info = ['numeric']
        dataset = Dataset(X, y, data_info)

        expected_X = [[1, 1.95], [2, 1.95], [3, 3.85], [4, 3.85], [5, 5.75],
                      [6, 5.75], [7, 7.65], [8, 7.65], [9, 9.55], [10, 9.55],
                      [11, 11.45], [12, 11.45], [13, 13.35], [14, 13.35],
                      [15, 15.25], [16, 15.25], [17, 17.15], [18, 17.15],
                      [19, 19.05], [20, 19.05]]

        transformation = t.TransformationBinningMean()
        d, tc = transformation.transform(dataset)
        np.testing.assert_equal(d.data_info, ['numeric'] + ['numeric'])
        np.testing.assert_allclose(d.X, expected_X)

        X = [[5], [4], [3], [2], [1]]
        y = [1, 2, 3]
        data_info = ['numeric']
        dataset = Dataset(X, y, data_info)

        expected_X = [[5, 5.75], [4, 3.85], [3, 3.85], [2, 1.95], [1, 1.95]]

        d, _ = tc.transform(dataset)
        np.testing.assert_equal(d.data_info, ['numeric'] + ['numeric'])
        np.testing.assert_allclose(d.X, expected_X)

        self.assertNotEqual(transformation, tc)
        self.assertTrue(transformation.binner is None)
        self.assertTrue(tc.binner is not None)
Example #4
0
    def test_impsim(self):
        X = [[1, 1, 'red'], [2, 2, 'blue'], [3, '?', 'red'], [5, 5, '?'],
             [5, 5, 'blue'], ['?', 2, 'red']]
        y = [1, 2, 1, 1, 2]
        data_info = ['numeric', 'numeric', 'nominal']

        dataset = Dataset(X, y, data_info, '?', '%Y-%m-%d', True)
        transformation = t.TransformationImputeSimple()
        d, tc = transformation.transform(dataset)

        expected_X = [[1, 1, 1], [2, 2, 0], [3, 2, 1], [5, 5, 1], [5, 5, 0],
                      [3, 2, 1]]

        self.assertEqual(d.data_info, ['numeric', 'numeric', 'nominal'])
        self.assertFalse(d.contains_missing_values())
        np.testing.assert_equal(d.X, expected_X)

        d, _ = tc.transform(dataset)

        self.assertEqual(d.data_info, ['numeric', 'numeric', 'nominal'])
        self.assertFalse(d.contains_missing_values())

        self.assertNotEqual(transformation, tc)
        self.assertTrue(transformation.imputer is None)
        self.assertTrue(tc.imputer is not None)
Example #5
0
    def test_select_percentile(self):
        X = [[-1, 1, 1, 1, -1], [-3, 1, 2, 1, -3], [1, 2, 3, 1, 1]]
        y = [1, 2, 3]
        data_info = ['numeric', 'numeric', 'numeric', 'numeric', 'numeric']
        dataset = Dataset(X, y, data_info)

        transformation = t.TransformationSelectPercentile(25)
        d, tc = transformation.transform(dataset)
        np.testing.assert_equal(d.data_info, ['numeric'])

        self.assertNotEqual(transformation, tc)

        d, _ = tc.transform(dataset)
        np.testing.assert_equal(d.data_info, ['numeric'])

        transformation = t.TransformationSelectPercentile(50)
        d, tc = transformation.transform(dataset)
        np.testing.assert_equal(d.data_info, ['numeric', 'numeric'])

        self.assertNotEqual(transformation, tc)

        d, _ = tc.transform(dataset)
        np.testing.assert_equal(d.data_info, ['numeric', 'numeric'])

        transformation = t.TransformationSelectPercentile(75)
        d, tc = transformation.transform(dataset)
        np.testing.assert_equal(d.data_info, ['numeric', 'numeric', 'numeric'])

        self.assertNotEqual(transformation, tc)

        d, _ = tc.transform(dataset)
        np.testing.assert_equal(d.data_info, ['numeric', 'numeric', 'numeric'])
Example #6
0
    def test_chain(self):
        X = [[1, 1, 1], [2, 2, 0], [3, 2, 1], [5, 5, 1], [5, 5, 0], [3, 2, 1]]
        y = [1, 2, 1, 1, 2, 3]
        data_info = ['numeric', 'numeric', 'numeric']
        d = Dataset(X, y, data_info)

        t1 = t.TransformationMul()
        t2 = t.TransformationSelectPercentile(50)
        t3 = t.TransformationMinMax()
        t4 = t.TransformationSelectPercentile(20)
        t5 = t.TransformationBinningNominal()

        d1, tc1 = t1.transform(d)
        d2, tc2 = t2.transform(d1)
        d3, tc3 = t3.transform(d2)
        d4, tc4 = t4.transform(d3)
        d5, tc5 = t5.transform(d4)

        d11, _ = tc1.transform(d)
        d22, _ = tc2.transform(d11)
        d33, _ = tc3.transform(d22)
        d44, _ = tc4.transform(d33)
        d55, _ = tc5.transform(d44)

        np.testing.assert_equal(d5.X, d55.X)
        np.testing.assert_equal(d5.data_info, d55.data_info)
Example #7
0
    def test_square(self):
        X = [[1, 0.5, 123], [1, 0.5, 123], [1, 2, 123], [1, 0.5, 123],
             [3, 0.5, 123]]
        y = [1, 2, 1, 1, 2]
        data_info = ['numeric', 'numeric', 'nominal']
        dataset = Dataset(X, y, data_info)

        transformation = t.TransformationSquare()
        d, tc = transformation.transform(dataset)
        expected_X = np.array([[1, 0.5, 123, 1.0, 0.25],
                               [1.0, 0.5, 123.0, 1.0, 0.25],
                               [1.0, 2.0, 123.0, 1.0, 4.],
                               [1.0, 0.5, 123.0, 1.0, 0.25],
                               [3.0, 0.5, 123.0, 9.0, 0.25]])
        np.testing.assert_equal(d.X, expected_X)
        np.testing.assert_equal(d.data_info, ['numeric'] * 2 + ['nominal'] +
                                ['numeric'] * 2)

        d, _ = tc.transform(dataset)
        expected_X = np.array([[1, 0.5, 123, 1.0, 0.25],
                               [1.0, 0.5, 123.0, 1.0, 0.25],
                               [1.0, 2.0, 123.0, 1.0, 4.],
                               [1.0, 0.5, 123.0, 1.0, 0.25],
                               [3.0, 0.5, 123.0, 9.0, 0.25]])
        np.testing.assert_equal(d.X, expected_X)
        np.testing.assert_equal(d.data_info, ['numeric'] * 2 + ['nominal'] +
                                ['numeric'] * 2)

        self.assertNotEqual(transformation, tc)
Example #8
0
    def test_get_type_indexes(self):
        d = Dataset(self.X, self.y, self.data_info, '?', '%Y-%m-%d', True)

        type_indexes = d.get_type_indexes('numeric')
        expected_indexes = [0, 1]

        np.testing.assert_equal(type_indexes, expected_indexes)
Example #9
0
    def test_contains_type(self):
        d = Dataset(self.X, self.y, self.data_info, '?', '%Y-%m-%d', True)

        self.assertEqual(d.contains_type('numeric'), True)
        self.assertEqual(d.contains_type('string'), False)

        d.remove_type('numeric')
        self.assertEqual(d.contains_type('numeric'), False)
Example #10
0
    def test_copy(self):
        d = Dataset(self.X, self.y, self.data_info, '?', '%Y-%m-%d', True)

        d_copy = d.copy()

        np.testing.assert_equal(d.X, d_copy.X)
        np.testing.assert_equal(d.data_info, d_copy.data_info)
        np.testing.assert_equal(d.missing_values, d_copy.missing_values)
        self.assertEqual(d == d_copy, False)
Example #11
0
 def transform(self, X, y, missing_value_mark=None):
     transformations = self._get_best_transformations()
     dataset = Dataset(X,
                       y,
                       self.graph.root.dataset.data_info,
                       missing_value_mark=missing_value_mark,
                       is_initial=True)
     for transformation in transformations:
         dataset, _ = transformation.transform(dataset)
     return dataset.X
Example #12
0
    def test_remove_type(self):
        d = Dataset(self.X, self.y, self.data_info, '?', '%Y-%m-%d', True)

        d.remove_type('nominal')
        expected_X = np.array([[1.0, 0.5, 1355266800.0],
                               [1.0, 0.5,
                                1355266800.0], [1.0, 0, 1385161200.0],
                               [1.0, 0.5, 1326236400.0], [0, 0.5,
                                                          955749600.0]])
        expected_data_info = ['numeric', 'numeric', 'timestamp']

        np.testing.assert_equal(d.X, expected_X)
        np.testing.assert_equal(d.data_info, expected_data_info)
Example #13
0
    def test_init(self):
        d = Dataset(self.X, self.y, self.data_info, '?', '%Y-%m-%d', True)

        expected_X = np.array([[1.0, 0.5, 1.0, 1355266800.0],
                               [1.0, 0.5, 0.0, 1355266800.0],
                               [1.0, 0, 1.0, 1385161200.0],
                               [1.0, 0.5, 0, 1326236400.0],
                               [0, 0.5, 1.0, 955749600.0]])
        expected_data_info = ['numeric', 'numeric', 'nominal', 'timestamp']

        np.testing.assert_equal(d.X, expected_X)
        self.assertEqual(d.data_info, expected_data_info)
        self.assertEqual(d.X.dtype, 'float64')
Example #14
0
    def test_minmax(self):
        X = [[-1, 0, 1, 5, 0, -3], [-3, 1, 2, 5, 0, 0], [1, 3, 2, 5, 0, 3]]
        y = [1, 2, 3]
        data_info = [
            'numeric', 'nominal', 'nominal', 'numeric', 'numeric', 'numeric'
        ]
        dataset = Dataset(X, y, data_info)

        transformation = t.TransformationMinMax()
        d, tc = transformation.transform(dataset)
        expected_X = np.array([[-1, 0, 1, 5, 0, -3, 0.5, 0],
                               [-3, 1, 2, 5, 0, 0, 0, 0.5],
                               [1, 3, 2, 5, 0, 3, 1, 1]])
        np.testing.assert_equal(d.X, expected_X)
        np.testing.assert_equal(
            d.data_info,
            ['numeric', 'nominal', 'nominal', 'numeric', 'numeric', 'numeric'
             ] + ['numeric'] * 2)

        X = [[-1, 0, 1, 5, 0, -1.5], [-3, 1, 2, 5, 0, 0], [1, 3, 2, 5, 0, 1.5]]
        y = [1, 2, 3]
        data_info = [
            'numeric', 'nominal', 'nominal', 'numeric', 'numeric', 'numeric'
        ]
        dataset = Dataset(X, y, data_info)

        d, _ = tc.transform(dataset)
        expected_X = np.array([[-1, 0, 1, 5, 0, -1.5, 0.5, 0.25],
                               [-3, 1, 2, 5, 0, 0, 0, 0.5],
                               [1, 3, 2, 5, 0, 1.5, 1, 0.75]])
        np.testing.assert_equal(d.X, expected_X)
        np.testing.assert_equal(
            d.data_info,
            ['numeric', 'nominal', 'nominal', 'numeric', 'numeric', 'numeric'
             ] + ['numeric'] * 2)

        self.assertNotEqual(transformation, tc)
        self.assertTrue(transformation.scaler is None)
        self.assertTrue(tc.scaler is not None)
Example #15
0
    def test_remove_column(self):
        X = [[1, 0.5, 'red', '2012-12-12'], [1, 0.5, 'blue', '2012-12-12'],
             [1, '?', 'red', '?'], [1, 0.5, '?', '2012-01-11'],
             ['?', 0.5, 'red', '2000-04-15']]
        d = Dataset(X, self.y, self.data_info, '?', '%Y-%m-%d', True)
        d.remove_columns([0, 2])

        expected_X = [[0.5, 1355266800.0], [0.5, 1355266800.0], [0, 0],
                      [0.5, 1326236400.0], [0.5, 955749600.0]]
        expected_data_info = ['numeric', 'timestamp']
        expected_missing_values = (np.array([2, 2]), np.array([0, 1]))

        np.testing.assert_equal(d.X, expected_X)
        np.testing.assert_equal(d.data_info, expected_data_info)
        np.testing.assert_equal(d.missing_values, expected_missing_values)
Example #16
0
    def test_mul(self):
        X = [[-1, 0], [-3, 1], [1, 3]]
        y = [1, 2, 3]
        data_info = ['numeric', 'numeric']
        dataset = Dataset(X, y, data_info)

        transformation = t.TransformationMul()
        d, tc = transformation.transform(dataset)
        expected_X = np.array([[-1, 0, 0], [-3, 1, -3], [1, 3, 3]])
        np.testing.assert_equal(d.X, expected_X)
        np.testing.assert_equal(d.data_info, ['numeric'] * 3)

        d, _ = transformation.transform(dataset)
        expected_X = np.array([[-1, 0, 0], [-3, 1, -3], [1, 3, 3]])
        np.testing.assert_equal(d.X, expected_X)
        np.testing.assert_equal(d.data_info, ['numeric'] * 3)
        self.assertNotEqual(transformation, tc)
Example #17
0
    def test_filter_data(self):
        d = Dataset(self.X, self.y, self.data_info, '?', '%Y-%m-%d', True)

        actual = d.filter_data(['numeric', 'timestamp'])
        expected = np.array([[1.0, 0.5, 1355266800.0],
                             [1.0, 0.5, 1355266800.0], [1.0, 0, 1385161200.0],
                             [1.0, 0.5, 1326236400.0], [0, 0.5, 955749600.0]])

        expected_X = np.array([[1.0, 0.5, 1.0, 1355266800.0],
                               [1.0, 0.5, 0.0, 1355266800.0],
                               [1.0, 0, 1.0, 1385161200.0],
                               [1.0, 0.5, 0, 1326236400.0],
                               [0, 0.5, 1.0, 955749600.0]])
        expected_data_info = ['numeric', 'numeric', 'nominal', 'timestamp']

        np.testing.assert_equal(actual, expected)
        np.testing.assert_equal(d.X, expected_X)
        np.testing.assert_equal(d.data_info, expected_data_info)
Example #18
0
    def _transform(self, dataset):
        if dataset.contains_missing_values() == False:
            return dataset

        dataset.readd_missing_values()

        if self.is_copied_instance == False or self.imputer is None:
            self.imputer = self._get_imputer()
            if isinstance(self.imputer, TransformationImputeSimple.Imputer):
                self.imputer.fit(dataset)
            else:
                self.imputer.fit(dataset.X)

        X = self.imputer.transform(dataset.X)
        new_dataset = Dataset(X, dataset.y, dataset.data_info,
                              dataset.missing_value_mark)
        new_dataset.mark_as_imputed()

        return new_dataset
Example #19
0
    def test_extend(self):
        d = Dataset(self.X, self.y, self.data_info, '?', '%Y-%m-%d', True)

        d.extend(np.array([[1, 2], [3, 4], [5, 6], [7, 8], [9, 10]]),
                 ['numeric', 'numeric', 'aaa'])

        expected_X = np.array([[1.0, 0.5, 1.0, 1355266800.0, 1, 2],
                               [1.0, 0.5, 0.0, 1355266800.0, 3, 4],
                               [1.0, 0, 1.0, 1385161200.0, 5, 6],
                               [1.0, 0.5, 0, 1326236400.0, 7, 8],
                               [0, 0.5, 1.0, 955749600.0, 9, 10]])
        expected_data_info = [
            'numeric', 'numeric', 'nominal', 'timestamp', 'numeric', 'numeric',
            'aaa'
        ]

        np.testing.assert_equal(d.X, expected_X)
        self.assertEqual(d.data_info, expected_data_info)
        self.assertEqual(d.X.dtype, 'float64')
        self.assertEqual(d.contains_type('aaa'), True)
Example #20
0
    def test_sqrt(self):
        X = [[-1, 0, 1], [-3, 1, 2]]
        y = [1, 2]
        data_info = ['numeric', 'numeric', 'numeric']
        dataset = Dataset(X, y, data_info)

        transformation = t.TransformationSqrt()
        d, tc = transformation.transform(dataset)
        expected_X = np.array([[-1, 0, 1, sqrt(2), sqrt(1)],
                               [-3, 1, 2, sqrt(0), sqrt(2)]])
        np.testing.assert_equal(d.X, expected_X)
        np.testing.assert_equal(d.data_info, ['numeric'] * 5)

        d, _ = tc.transform(dataset)
        expected_X = np.array([[-1, 0, 1, sqrt(2), sqrt(1)],
                               [-3, 1, 2, sqrt(0), sqrt(2)]])
        np.testing.assert_equal(d.X, expected_X)
        np.testing.assert_equal(d.data_info, ['numeric'] * 5)

        self.assertNotEqual(transformation, tc)
Example #21
0
    def test_aggregation(self):
        X = [[0, -1], [-3, 1], [1, 3]]
        y = [1, 2, 3]
        data_info = ['numeric', 'numeric']
        dataset = Dataset(X, y, data_info)

        transformation = t.TransformationAggregation()
        d, tc = transformation.transform(dataset)
        expected_X = np.array([[0, -1, -1, 0, -0.5, 0.5],
                               [-3, 1, -3, 1, -1, 2], [1, 3, 1, 3, 2, 1]])
        np.testing.assert_equal(d.X, expected_X)
        np.testing.assert_equal(d.data_info, ['numeric'] * 6)

        d, _ = transformation.transform(dataset)
        expected_X = np.array([[0, -1, -1, 0, -0.5, 0.5],
                               [-3, 1, -3, 1, -1, 2], [1, 3, 1, 3, 2, 1]])
        np.testing.assert_equal(d.X, expected_X)
        np.testing.assert_equal(d.data_info, ['numeric'] * 6)

        self.assertNotEqual(transformation, tc)
Example #22
0
    def test_zscore(self):
        X = [[-1, 0, 1, 5, 0, -3], [-3, 1, 2, 5, 0, 0], [1, 3, 2, 5, 0, 3]]
        y = [1, 2, 3]
        data_info = [
            'numeric', 'nominal', 'nominal', 'numeric', 'numeric', 'numeric'
        ]
        dataset = Dataset(X, y, data_info)

        transformation = t.TransformationMinMax()
        d, tc = transformation.transform(dataset)
        self.assertFalse(d.contains_missing_values())
        np.testing.assert_equal(
            d.data_info, ['numeric', 'nominal', 'nominal'] + ['numeric'] * 5)

        d, _ = tc.transform(dataset)
        self.assertFalse(d.contains_missing_values())
        np.testing.assert_equal(
            d.data_info, ['numeric', 'nominal', 'nominal'] + ['numeric'] * 5)

        self.assertNotEqual(transformation, tc)
        self.assertTrue(transformation.scaler is None)
        self.assertTrue(tc.scaler is not None)
Example #23
0
    def test_init_2(self):
        X = [[1, 0.5, 'red', '2012-12-12', -1],
             [1, 0.5, 'blue', '2012-12-12', 1],
             [1, '?', 'red', '2013-11-23', -1], [1, 0.5, '?', '2012-01-11', 1],
             ['?', 0.5, 'red', '2000-04-15', '?']]
        data_info = ['numeric', 'numeric', 'nominal', 'date', 'nominal']
        d = Dataset(X, self.y, data_info, '?', '%Y-%m-%d', True)

        expected_X = np.array([[1.0, 0.5, 1.0, 1355266800.0, 0],
                               [1.0, 0.5, 0.0, 1355266800.0, 1],
                               [1.0, 0, 1.0, 1385161200.0, 0],
                               [1.0, 0.5, 0, 1326236400.0, 1],
                               [0, 0.5, 1.0, 955749600.0, 0]])
        expected_data_info = [
            'numeric', 'numeric', 'nominal', 'timestamp', 'nominal'
        ]
        expected_missing_values = (np.array([2, 3, 4,
                                             4]), np.array([1, 2, 0, 4]))

        np.testing.assert_equal(d.X, expected_X)
        np.testing.assert_equal(d.missing_values, expected_missing_values)
        self.assertEqual(d.data_info, expected_data_info)
        self.assertEqual(d.X.dtype, 'float64')
Example #24
0
    def fit(self, X, y, data_info=None, missing_value_mark=None):
        if type(self.max_iter) is not list:
            self.max_iter = [self.max_iter]

        for i in range(0, len(self.max_iter)):
            print("Max iter: " + str(self.max_iter[i]))

            if data_info == None:
                data_info = X.shape[1] * ['numeric']
            dataset = Dataset(X.copy(),
                              y.copy(),
                              data_info.copy(),
                              missing_value_mark=missing_value_mark,
                              is_initial=True)
            self.graph = TransformationGraph(dataset,
                                             self.transformation_factory,
                                             self.estimator, self.cv,
                                             self.max_iter[i], self.h_max,
                                             self.w, self.random_state,
                                             self.scoring)

            self._fit(self.max_iter[i])
        return self.w
Example #25
0
    def test_iteimp(self):
        X = [[1, 0.5, 'red', '2012-12-12'], [1, 0.5, 'blue', '2012-12-12'],
             [1, '?', 'red', '2013-11-23'], [1, 0.5, '?', '2012-01-11'],
             ['?', 0.5, 'red', '2000-04-15']]
        y = [1, 2, 1, 1, 2]
        data_info = ['numeric', 'numeric', 'nominal', 'date']

        dataset = Dataset(X, y, data_info, '?', '%Y-%m-%d', True)
        transformation = t.TransformationImputeIterative()
        d, tc = transformation.transform(dataset)

        self.assertEqual(d.data_info,
                         ['numeric', 'numeric', 'nominal', 'timestamp'])
        self.assertFalse(d.contains_missing_values())

        d, _ = tc.transform(dataset)

        self.assertEqual(d.data_info,
                         ['numeric', 'numeric', 'nominal', 'timestamp'])
        self.assertFalse(d.contains_missing_values())

        self.assertNotEqual(transformation, tc)
        self.assertTrue(transformation.imputer is None)
        self.assertTrue(tc.imputer is not None)
Example #26
0
    def test_contains_missing_value(self):
        d = Dataset(self.X, self.y, self.data_info, '?', '%Y-%m-%d', True)
        self.assertEqual(d.contains_missing_values(), True)

        d.mark_as_imputed()
        self.assertEqual(d.contains_missing_values(), False)