else: from urllib.request import urlretrieve urlretrieve(snapshot_url, snapshot_path) load(resolver, snapshot_path) epsilon.set_value(0) ##one-turn response function prev_memory_state = T.vector("prev_mem_state_input", dtype=floatX) observation = T.vector("observation_input", dtype=floatX) prev_memory_tensor = prev_memory_state.reshape([1, -1]) observation_tensor = observation.reshape([1, -1]) new_state_tensor, Qvalues_tensor, action_tensor, _ = agent.get_agent_reaction( prev_memory_tensor, observation_tensor) new_state, Qvalues, action = new_state_tensor[0], Qvalues_tensor[ 0], action_tensor[0] get_agent_reaction = theano.function([prev_memory_state, observation], [new_state, Qvalues, action]) ##auxilary transformer function def response_to_observation(response, prev_action, is_alive=True): """creates a wikicat-format observation from""" observation = np.zeros(env.observation_size, dtype=floatX) observation[0] = response
##one-turn response function prev_memory_state = T.vector("prev_mem_state_input",dtype=floatX) observation = T.vector("observation_input",dtype=floatX) prev_memory_tensor = prev_memory_state.reshape([1,-1]) prev_gru1 = prev_memory_tensor[:,:n_hid_1] prev_gru2 = prev_memory_tensor[:,n_hid_1:] observation_tensor = observation.reshape([1,-1]) action_channels,_, outputs, = agent.get_agent_reaction( { gru1:prev_gru1, gru2:prev_gru2 },observation_tensor,) action_tensor = action_channels[0] Qvalues_tensor = outputs[0] new_state_tensor = outputs[1] #concatenated memory new_state, Qvalues, action = new_state_tensor[0],Qvalues_tensor[0],action_tensor[0] get_agent_reaction = theano.function([prev_memory_state,observation], [new_state,Qvalues,action])
epsilon.set_value(0) ##one-turn response function prev_memory_state = T.vector("prev_mem_state_input",dtype=floatX) observation = T.vector("observation_input",dtype=floatX) prev_memory_tensor = prev_memory_state.reshape([1,-1]) observation_tensor = observation.reshape([1,-1]) new_state_tensor, Qvalues_tensor, action_tensor,_ = agent.get_agent_reaction(prev_memory_tensor,observation_tensor) new_state, Qvalues, action = new_state_tensor[0],Qvalues_tensor[0],action_tensor[0] get_agent_reaction = theano.function([prev_memory_state,observation], [new_state,Qvalues,action]) ##auxilary transformer function def response_to_observation(response,prev_action,is_alive=True): """creates a wikicat-format observation from""" observation = np.zeros(env.observation_size,dtype=floatX)
epsilon.set_value(0) ##one-turn response function prev_memory_state = T.vector("prev_mem_state_input", dtype=floatX) observation = T.vector("observation_input", dtype=floatX) prev_memory_tensor = prev_memory_state.reshape([1, -1]) prev_gru1 = prev_memory_tensor[:, :n_hid_1] prev_gru2 = prev_memory_tensor[:, n_hid_1:] observation_tensor = observation.reshape([1, -1]) action_channels, _, outputs, = agent.get_agent_reaction( { gru1: prev_gru1, gru2: prev_gru2 }, observation_tensor, ) action_tensor = action_channels[0] Qvalues_tensor = outputs[0] new_state_tensor = outputs[1] #concatenated memory new_state, Qvalues, action = new_state_tensor[0], Qvalues_tensor[ 0], action_tensor[0] get_agent_reaction = theano.function([prev_memory_state, observation], [new_state, Qvalues, action])