def test_integrity(self): graph = Graph() initial_node_name = gen_name() graph.add_node(initial_node_name, layer=0, position=(0.5, 0.5), label='E') [i1, i2] = P1().apply(graph, [initial_node_name]) [i1_1, i1_2] = P2().apply(graph, [i1]) [i2_1, i2_2] = P2().apply(graph, [i2]) [i3_1, i3_2] = P2().apply(graph, [i1_1]) if visualize_tests: visualize_graph_3d(graph) pyplot.show() [i4_1, i4_2] = P2().apply(graph, [i1_2]) self.check_graph_integrity(graph, i1, 'i') self.check_graph_integrity(graph, i2, 'i') self.check_graph_integrity(graph, i1_1, 'i') self.check_graph_integrity(graph, i1_2, 'i') self.check_graph_integrity(graph, i2_1, 'I') self.check_graph_integrity(graph, i2_2, 'I') self.check_graph_integrity(graph, i3_1, 'I') self.check_graph_integrity(graph, i3_2, 'I') self.check_graph_integrity(graph, i4_1, 'I') self.check_graph_integrity(graph, i4_2, 'I') if visualize_tests: visualize_graph_3d(graph) pyplot.show()
def test_happy_path(self): graph = Graph() initial_node = gen_name() graph.add_node(initial_node, layer=0, position=(0.5, 0.5), label='E') if visualize_tests: visualize_graph_3d(graph) pyplot.show() P1().apply(graph, [initial_node]) nodes_data = graph.nodes(data=True) self.assertEqual(len(graph.nodes()), 7) self.assertEqual(len(graph.edges()), 13) # check the initial node initial_node_data = nodes_data[initial_node] self.assertEqual(initial_node_data['layer'], 0) self.assertEqual(initial_node_data['position'], (0.5, 0.5)) self.assertEqual(initial_node_data['label'], 'e') # check other nodes vx_bl = get_node_at(graph, 1, (0, 0)) vx_br = get_node_at(graph, 1, (1, 0)) vx_tl = get_node_at(graph, 1, (0, 1)) vx_tr = get_node_at(graph, 1, (1, 1)) self.assertIsNotNone(vx_bl) self.assertIsNotNone(vx_br) self.assertIsNotNone(vx_tl) self.assertIsNotNone(vx_tr) self.assertEqual(nodes_data[vx_bl]['label'], 'E') self.assertEqual(nodes_data[vx_br]['label'], 'E') self.assertEqual(nodes_data[vx_tl]['label'], 'E') self.assertEqual(nodes_data[vx_tr]['label'], 'E') vx_i1 = get_node_at(graph, 1, (2 / 3, 1 / 3)) vx_i2 = get_node_at(graph, 1, (1 / 3, 2 / 3)) self.assertIsNotNone(vx_i1) self.assertIsNotNone(vx_i2) self.assertEqual(nodes_data[vx_i1]['label'], 'I') self.assertEqual(nodes_data[vx_i2]['label'], 'I') self.assertTrue(graph.has_edge(initial_node, vx_i1)) self.assertTrue(graph.has_edge(initial_node, vx_i2)) self.assertTrue(graph.has_edge(vx_tl, vx_tr)) self.assertTrue(graph.has_edge(vx_tr, vx_br)) self.assertTrue(graph.has_edge(vx_br, vx_bl)) self.assertTrue(graph.has_edge(vx_bl, vx_tl)) self.assertTrue(graph.has_edge(vx_bl, vx_tr)) self.assertTrue(graph.has_edge(vx_i1, vx_bl)) self.assertTrue(graph.has_edge(vx_i1, vx_br)) self.assertTrue(graph.has_edge(vx_i1, vx_tr)) self.assertTrue(graph.has_edge(vx_i2, vx_bl)) self.assertTrue(graph.has_edge(vx_i2, vx_tl)) self.assertTrue(graph.has_edge(vx_i2, vx_tr)) if visualize_tests: visualize_graph_3d(graph) pyplot.show()
def test_different_position(self): graph = Graph() initial_node = gen_name() graph.add_node(initial_node, layer=0, position=(0, 0), label='E') if visualize_tests: visualize_graph_3d(graph) pyplot.show() P1().apply(graph, [initial_node], positions=[ (0, 0), (2, 1.5), (1.5, 2), (-0.5, 1.5), ]) # check other nodes vx_bl = get_node_at(graph, 1, (0, 0)) vx_br = get_node_at(graph, 1, (2, 1.5)) vx_tl = get_node_at(graph, 1, (1.5, 2)) vx_tr = get_node_at(graph, 1, (-0.5, 1.5)) self.assertIsNotNone(vx_bl) self.assertIsNotNone(vx_br) self.assertIsNotNone(vx_tl) self.assertIsNotNone(vx_tr) if visualize_tests: visualize_graph_3d(graph) pyplot.show()
def derive_b(): graph = Graph() initial_node_name = gen_name() graph.add_node(initial_node_name, layer=0, position=(0.5, 0.5), label='E') visualize_graph_3d(graph) pyplot.show() [i1, i2] = P1().apply(graph, [initial_node_name]) visualize_graph_3d(graph) pyplot.show() [i1_1, i1_2] = P2().apply(graph, [i1], orientation=1) [i2_1] = P9().apply(graph, [i2]) visualize_graph_3d(graph) pyplot.show() P10().apply(graph, [i1_1, i1_2, i2_1]) visualize_graph_3d(graph) pyplot.show() return graph
def run(self, graph, p1_positions): assert len(graph.nodes()) == 1 initial_node_name = list(graph.nodes())[0] self.visualize_if_enabled(graph) [i1, i2] = P1().apply(graph, [initial_node_name], positions=p1_positions) self.visualize_if_enabled(graph) [i1_] = P9().apply(graph, [i1]) self.visualize_if_enabled(graph) [i2_] = P9().apply(graph, [i2]) self.visualize_if_enabled(graph) [] = P12().apply(graph, [i1, i2, i1_, i2_]) self.visualize_if_enabled(graph) if self.visualize: visualize_graph_layer(graph, 0) pyplot.show() visualize_graph_layer(graph, 1) pyplot.show() visualize_graph_layer(graph, 2) pyplot.show()
def test_wrong_args(self): graph = Graph() initial_node = gen_name() graph.add_node(initial_node, layer=1, position=(0.5, 0.5), label='E') if visualize_tests: visualize_graph_3d(graph) pyplot.show() with self.assertRaisesRegex(ValueError, 'not enough values to unpack'): P1().apply(graph, []) self.assertEqual(len(graph.nodes()), 1) if visualize_tests: visualize_graph_3d(graph) pyplot.show()
def test_wrong_label(self): graph = Graph() initial_node = gen_name() graph.add_node(initial_node, layer=0, position=(0.5, 0.5), label='e') if visualize_tests: visualize_graph_3d(graph) pyplot.show() with self.assertRaisesRegex(ValueError, 'bad label'): P1().apply(graph, [initial_node]) self.assertEqual(len(graph.nodes()), 1) if visualize_tests: visualize_graph_3d(graph) pyplot.show()
def derive_e(): g = Graph() initial_node_name = gen_name() g.add_node(initial_node_name, layer=0, position=(0.5, 0.5), label='E') # Layer 1 [a1, a2] = P1().apply(g, [initial_node_name]) # Layer 2 [b3, b2] = P2().apply(g, [a1], orientation=1) [b4, b1] = P2().apply(g, [a2], orientation=1) P6().apply(g, [a1, a2, b1, b2, b3, b4]) # Layer 3 [c3, c2] = P2().apply(g, [b1], orientation=1) [i11, c1] = P2().apply(g, [b2]) [i13, i12] = P2().apply(g, [b3], orientation=1) [i14, c4] = P2().apply(g, [b4]) P12().apply(g, [b3, b4, i13, i14]) P12().apply(g, [b1, b4, c3, c4]) P12().apply(g, [b2, b1, c1, c2]) P13().apply(g, [b2, b3, i11, i12]) # Layer 4 [new_i11] = P9().apply(g, [i11]) [new_i12] = P9().apply(g, [i12]) [new_i13] = P9().apply(g, [i13]) [new_i14] = P9().apply(g, [i14]) [i22, d1] = P2().apply(g, [c1], orientation=1) [d3, d2] = P2().apply(g, [c2], orientation=1) [d4, d5] = P2().apply(g, [c3], orientation=2) [i25, d6] = P2().apply(g, [c4], orientation=2) P12().apply(g, [i12, i13, new_i12, new_i13]) P12().apply(g, [i13, i14, new_i13, new_i14]) P12().apply(g, [i14, c4, new_i14, i25]) P12().apply(g, [i11, c1, new_i11, i22]) P12().apply(g, [c2, c3, d3, d4]) P6().apply(g, [c1, c2, d1, d2, d3, i22]) P6().apply(g, [c3, c4, d4, d5, d6, i25]) P13().apply(g, [i11, i12, new_i11, new_i12]) i11 = new_i11 i12 = new_i12 i13 = new_i13 i14 = new_i14 # Layer 5 [new_i11] = P9().apply(g, [i11]) [new_i12] = P9().apply(g, [i12]) [new_i13] = P9().apply(g, [i13]) [new_i14] = P9().apply(g, [i14]) [new_i22] = P9().apply(g, [i22]) [new_i25] = P9().apply(g, [i25]) [i21, e1] = P2().apply(g, [d1]) [e3, e2] = P2().apply(g, [d2], orientation=1) [i23, e4] = P2().apply(g, [d3]) [i24, e5] = P2().apply(g, [d4]) [e7, e6] = P2().apply(g, [d5], orientation=1) [i26, e8] = P2().apply(g, [d6]) P12().apply(g, [i12, i13, new_i12, new_i13]) P12().apply(g, [i13, i14, new_i13, new_i14]) P12().apply(g, [i11, i22, new_i11, new_i22]) P12().apply(g, [i14, i25, new_i14, new_i25]) P12().apply(g, [i22, d1, new_i22, i21]) P12().apply(g, [i25, d6, new_i25, i26]) P12().apply(g, [d2, d3, e3, e4]) P12().apply(g, [d1, d2, e1, e2]) P12().apply(g, [d4, d5, e5, e6]) P12().apply(g, [d5, d6, e7, e8]) P6().apply(g, [d3, d4, e4, e5, i23, i24]) P13().apply(g, [d3, i22, new_i22, i23]) P13().apply(g, [d4, i25, i24, new_i25]) P13().apply(g, [i11, i12, new_i11, new_i12]) i11 = new_i11 i12 = new_i12 i13 = new_i13 i14 = new_i14 i22 = new_i22 i25 = new_i25 # Layer 6 [new_i11] = P9().apply(g, [i11]) [new_i12] = P9().apply(g, [i12]) [new_i13] = P9().apply(g, [i13]) [new_i14] = P9().apply(g, [i14]) [new_i21] = P9().apply(g, [i21]) [new_i22] = P9().apply(g, [i22]) [new_i23] = P9().apply(g, [i23]) [new_i24] = P9().apply(g, [i24]) [new_i25] = P9().apply(g, [i25]) [new_i26] = P9().apply(g, [i26]) P12().apply(g, [i12, i13, new_i12, new_i13]) P12().apply(g, [i13, i14, new_i13, new_i14]) P12().apply(g, [i11, i22, new_i11, new_i22]) P12().apply(g, [i14, i25, new_i14, new_i25]) P12().apply(g, [i21, i22, new_i21, new_i22]) P12().apply(g, [i25, i26, new_i25, new_i26]) [i31, i41] = P2().apply(g, [e1], orientation=1) [i42, f1] = P2().apply(g, [e2], orientation=1) [i43, f2] = P2().apply(g, [e3], orientation=2) [i32, i44] = P2().apply(g, [e4], orientation=2) [i33, i45] = P2().apply(g, [e5], orientation=1) [i46, f3] = P2().apply(g, [e6], orientation=1) [i47, f4] = P2().apply(g, [e7], orientation=2) [i34, i48] = P2().apply(g, [e8], orientation=2) P6().apply(g, [e1, e2, f1, i41, i42, i31]) P6().apply(g, [e3, e4, f2, i43, i44, i32]) P6().apply(g, [e5, e6, f3, i45, i46, i33]) P6().apply(g, [e7, e8, f4, i47, i48, i34]) P12().apply(g, [e2, e3, i42, i43]) P12().apply(g, [e4, e5, i44, i45]) P12().apply(g, [e6, e7, i46, i47]) P12().apply(g, [i21, e1, new_i21, i31]) P12().apply(g, [i23, e4, new_i23, i32]) P12().apply(g, [i24, e5, new_i24, i33]) P12().apply(g, [i26, e8, new_i26, i34]) P13().apply(g, [i22, i23, new_i22, new_i23]) P13().apply(g, [i23, i24, new_i23, new_i24]) P13().apply(g, [i24, i25, new_i24, new_i25]) P13().apply(g, [i11, i12, new_i11, new_i12]) i11 = new_i11 i12 = new_i12 i13 = new_i13 i14 = new_i14 i21 = new_i21 i22 = new_i22 i23 = new_i23 i24 = new_i24 i25 = new_i25 i26 = new_i26 # Layer 7 [new_i11] = P9().apply(g, [i11]) [new_i12] = P9().apply(g, [i12]) [new_i13] = P9().apply(g, [i13]) [new_i14] = P9().apply(g, [i14]) [new_i21] = P9().apply(g, [i21]) [new_i22] = P9().apply(g, [i22]) [new_i23] = P9().apply(g, [i23]) [new_i24] = P9().apply(g, [i24]) [new_i25] = P9().apply(g, [i25]) [new_i26] = P9().apply(g, [i26]) [new_i31] = P9().apply(g, [i31]) [new_i32] = P9().apply(g, [i32]) [new_i33] = P9().apply(g, [i33]) [new_i34] = P9().apply(g, [i34]) [new_i41] = P9().apply(g, [i41]) [new_i42] = P9().apply(g, [i42]) [new_i43] = P9().apply(g, [i43]) [new_i44] = P9().apply(g, [i44]) [new_i45] = P9().apply(g, [i45]) [new_i46] = P9().apply(g, [i46]) [new_i47] = P9().apply(g, [i47]) [new_i48] = P9().apply(g, [i48]) P12().apply(g, [i12, i13, new_i12, new_i13]) P12().apply(g, [i13, i14, new_i13, new_i14]) P12().apply(g, [i11, i22, new_i11, new_i22]) P12().apply(g, [i14, i25, new_i14, new_i25]) P12().apply(g, [i21, i22, new_i21, new_i22]) P12().apply(g, [i25, i26, new_i25, new_i26]) P12().apply(g, [i21, i31, new_i21, new_i31]) P12().apply(g, [i23, i32, new_i23, new_i32]) P12().apply(g, [i24, i33, new_i24, new_i33]) P12().apply(g, [i26, i34, new_i26, new_i34]) P12().apply(g, [i31, i41, new_i31, new_i41]) P12().apply(g, [i31, i42, new_i31, new_i42]) P12().apply(g, [i32, i43, new_i32, new_i43]) P12().apply(g, [i32, i44, new_i32, new_i44]) P12().apply(g, [i33, i45, new_i33, new_i45]) P12().apply(g, [i33, i46, new_i33, new_i46]) P12().apply(g, [i34, i47, new_i34, new_i47]) P12().apply(g, [i34, i48, new_i34, new_i48]) P12().apply(g, [i42, i43, new_i42, new_i43]) P12().apply(g, [i44, i45, new_i44, new_i45]) P12().apply(g, [i46, i47, new_i46, new_i47]) [i52, i51] = P2().apply(g, [f1], orientation=1) [i54, i53] = P2().apply(g, [f2], orientation=1) [i56, i55] = P2().apply(g, [f3], orientation=1) [i58, i57] = P2().apply(g, [f4], orientation=1) P12().apply(g, [i41, f1, new_i41, i51]) P12().apply(g, [i43, f2, new_i43, i53]) P12().apply(g, [i45, f3, new_i45, i55]) P12().apply(g, [i47, f4, new_i47, i57]) P13().apply(g, [i22, i23, new_i22, new_i23]) P13().apply(g, [i23, i24, new_i23, new_i24]) P13().apply(g, [i24, i25, new_i24, new_i25]) P13().apply(g, [i11, i12, new_i11, new_i12]) P13().apply(g, [i42, f1, new_i42, i52]) P13().apply(g, [i44, f2, new_i44, i54]) P13().apply(g, [i46, f3, new_i46, i56]) P13().apply(g, [i48, f4, new_i48, i58]) return g
""" This is an example derivation. If you want to test something you can use it. It's better to copy-paste this file as `test.py` in order not to accidentally commit this file. """ from matplotlib import pyplot from networkx import Graph from agh_graphs.productions.p1 import P1 from agh_graphs.productions.p2 import P2 from agh_graphs.utils import gen_name from agh_graphs.visualize import visualize_graph_layer, visualize_graph_3d if __name__ == '__main__': graph = Graph() initial_node_name = gen_name() graph.add_node(initial_node_name, layer=0, position=(0.5, 0.5), label='E') [i1, i2] = P1().apply(graph, [initial_node_name]) [i1_1, i1_2] = P2().apply(graph, [i1]) [i2_1, i2_2] = P2().apply(graph, [i2]) [i3_1, i3_2] = P2().apply(graph, [i1_1]) visualize_graph_3d(graph) pyplot.show() visualize_graph_layer(graph, 2) pyplot.show()
def testOnBiggerGraph(self): graph = Graph() initial_node_name = gen_name() graph.add_node(initial_node_name, layer=0, position=(0.5, 0.5), label='E') [i1, i2] = P1().apply(graph, [initial_node_name]) [i1_1, i1_2] = P2().apply(graph, [i1], orientation=1) [i2_1] = P9().apply(graph, [i2], orientation=1) if visualize_tests: visualize_graph_3d(graph) pyplot.show() [i1_1new, i1_2new, i2_1new] = P10().apply(graph, [i1_1, i1_2, i2_1]) self.assertEqual(len(graph.nodes()), 15) self.assertEqual(len(graph.edges()), 32) e = get_node_at(graph=graph, layer=0, pos=(0.5, 0.5)) e1 = get_node_at(graph=graph, layer=1, pos=(0.0, 0.0)) e2 = get_node_at(graph=graph, layer=1, pos=(1.0, 0.0)) e3 = get_node_at(graph=graph, layer=1, pos=(1.0, 1.0)) e4 = get_node_at(graph=graph, layer=1, pos=(0.0, 1.0)) e5 = get_node_at(graph=graph, layer=2, pos=(0.0, 0.0)) e6 = get_node_at(graph=graph, layer=2, pos=(1.0, 0.0)) e7 = get_node_at(graph=graph, layer=2, pos=(1.0, 1.0)) e8 = get_node_at(graph=graph, layer=2, pos=(0.0, 1.0)) e9 = get_node_at(graph=graph, layer=2, pos=(0.5, 0.5)) # check position self.assertIsNotNone(e) self.assertIsNotNone(e1) self.assertIsNotNone(e2) self.assertIsNotNone(e3) self.assertIsNotNone(e4) self.assertIsNotNone(e5) self.assertIsNotNone(e6) self.assertIsNotNone(e7) self.assertIsNotNone(e8) self.assertIsNotNone(e9) self.assertEqual(graph.nodes[i1_1new]['position'], graph.nodes[i1_1]['position']) self.assertEqual(graph.nodes[i1_2new]['position'], graph.nodes[i1_2]['position']) self.assertEqual(graph.nodes[i2_1new]['position'], graph.nodes[i2]['position']) # ten co jest z prawe self.assertEqual(graph.nodes[i1_1new]['layer'], graph.nodes[i1_1]['layer']) self.assertEqual(graph.nodes[i1_2new]['layer'], graph.nodes[i1_2]['layer']) self.assertEqual(graph.nodes[i2_1new]['layer'], graph.nodes[i2_1]['layer']) i1_new = get_node_at(graph=graph, layer=1, pos=graph.nodes[i1]['position']) i2_new = get_node_at(graph=graph, layer=1, pos=graph.nodes[i2]['position']) self.assertIsNotNone(i1_new) self.assertIsNotNone(i2_new) # zero self.assertTrue(graph.has_edge(e, i1_new)) self.assertTrue(graph.has_edge(e, i2_new)) # first self.assertTrue(graph.has_edge(e1, e2)) self.assertTrue(graph.has_edge(e1, e3)) self.assertTrue(graph.has_edge(e1, e4)) self.assertTrue(graph.has_edge(e1, i2_new)) self.assertTrue(graph.has_edge(e1, i1_new)) self.assertTrue(graph.has_edge(e2, e3)) self.assertTrue(graph.has_edge(e2, i2_new)) self.assertTrue(graph.has_edge(e3, e4)) self.assertTrue(graph.has_edge(e3, i1_new)) self.assertTrue(graph.has_edge(e3, i2_new)) self.assertTrue(graph.has_edge(e4, i1_new)) # second self.assertTrue(graph.has_edge(e5, e6)) self.assertTrue(graph.has_edge(e5, e9)) self.assertTrue(graph.has_edge(e5, e8)) self.assertTrue(graph.has_edge(e6, e7)) self.assertTrue(graph.has_edge(e7, e9)) self.assertTrue(graph.has_edge(e7, e8)) self.assertTrue(graph.has_edge(i1_new, i1_1new)) self.assertTrue(graph.has_edge(i1_new, i1_2new)) self.assertTrue(graph.has_edge(i2_new, i2_1new)) self.assertTrue(graph.has_edge(e5, i1_1new)) self.assertTrue(graph.has_edge(e8, i1_1new)) self.assertTrue(graph.has_edge(e9, i1_1new)) self.assertTrue(graph.has_edge(e7, i1_2new)) self.assertTrue(graph.has_edge(e8, i1_2new)) self.assertTrue(graph.has_edge(e9, i1_2new)) self.assertTrue(graph.has_edge(e5, i2_1new)) self.assertTrue(graph.has_edge(e6, i2_1new)) self.assertTrue(graph.has_edge(e7, i2_1new)) # check labels self.assertEqual(graph.nodes[e]['label'], 'e') self.assertEqual(graph.nodes[e1]['label'], 'E') self.assertEqual(graph.nodes[e2]['label'], 'E') self.assertEqual(graph.nodes[e3]['label'], 'E') self.assertEqual(graph.nodes[e4]['label'], 'E') self.assertEqual(graph.nodes[e5]['label'], 'E') self.assertEqual(graph.nodes[e6]['label'], 'E') self.assertEqual(graph.nodes[e7]['label'], 'E') self.assertEqual(graph.nodes[e8]['label'], 'E') self.assertEqual(graph.nodes[e9]['label'], 'E') self.assertEqual(graph.nodes[i1_1new]['label'], 'I') self.assertEqual(graph.nodes[i1_2new]['label'], 'I') self.assertEqual(graph.nodes[i2_1new]['label'], 'I') self.assertEqual(graph.nodes[i1_new]['label'], 'i') self.assertEqual(graph.nodes[i2_new]['label'], 'i')