Example #1
0
def test_per_from_state_wrong_type():
    # Assign
    buffer = PERBuffer(batch_size=5, buffer_size=20)
    state = buffer.get_state()
    state.type = "WrongType"

    # Act
    with pytest.raises(ValueError):
        PERBuffer.from_state(state=state)
Example #2
0
def test_per_get_state_without_data():
    # Assign
    buffer = PERBuffer(batch_size=5, buffer_size=20)

    # Act
    state = buffer.get_state()

    # Assert
    assert state.type == PERBuffer.type
    assert state.buffer_size == 20
    assert state.batch_size == 5
    assert state.data is None
Example #3
0
def test_per_from_state_without_data():
    # Assign
    buffer = PERBuffer(batch_size=5, buffer_size=20)
    state = buffer.get_state()

    # Act
    new_buffer = PERBuffer.from_state(state=state)

    # Assert
    assert new_buffer == buffer
    assert new_buffer.buffer_size == state.buffer_size
    assert new_buffer.batch_size == state.batch_size
    assert new_buffer.data == []
Example #4
0
def test_per_from_state_with_data():
    # Assign
    buffer = PERBuffer(batch_size=5, buffer_size=20)
    buffer = populate_buffer(buffer, 30)
    state = buffer.get_state()

    # Act
    new_buffer = PERBuffer.from_state(state=state)

    # Assert
    assert new_buffer == buffer
    assert new_buffer.buffer_size == state.buffer_size
    assert new_buffer.batch_size == state.batch_size
    assert new_buffer.data == state.data
    assert len(buffer.data) == state.buffer_size
Example #5
0
def test_per_get_state_with_data():
    # Assign
    buffer = PERBuffer(batch_size=5, buffer_size=20)
    sample_experience = Experience(state=[0, 1], action=[0], reward=0)
    for _ in range(25):
        buffer.add(**sample_experience.data)

    # Act
    state = buffer.get_state()

    # Assert
    assert state.type == PERBuffer.type
    assert state.buffer_size == 20
    assert state.batch_size == 5
    assert state.data is not None
    assert len(state.data) == 20

    for data in state.data:
        assert data == sample_experience
Example #6
0
class RainbowAgent(AgentBase):
    """Rainbow agent as described in [1].

    Rainbow is a DQN agent with some improvments that were suggested before 2017.
    As mentioned by the authors it's not exhaustive improvment but all changes are in
    relatively separate areas so their connection makes sense. These improvements are:
    * Priority Experience Replay
    * Multi-step
    * Double Q net
    * Dueling nets
    * NoisyNet
    * CategoricalNet for Q estimate

    Consider this class as a particular version of the DQN agent.

    [1] "Rainbow: Combining Improvements in Deep Reinforcement Learning" by Hessel et al. (DeepMind team)
    https://arxiv.org/abs/1710.02298
    """

    name = "Rainbow"

    def __init__(self,
                 input_shape: Union[Sequence[int], int],
                 output_shape: Union[Sequence[int], int],
                 state_transform: Optional[Callable] = None,
                 reward_transform: Optional[Callable] = None,
                 **kwargs):
        """
        A wrapper over the DQN thus majority of the logic is in the DQNAgent.
        Special treatment is required because the Rainbow agent uses categorical nets
        which operate on probability distributions. Each action is taken as the estimate
        from such distributions.

        Parameters:
            input_shape (tuple of ints): Most likely that's your *state* shape.
            output_shape (tuple of ints): Most likely that's you *action* shape.
            pre_network_fn (function that takes input_shape and returns network):
                Used to preprocess state before it is used in the value- and advantage-function in the dueling nets.
            hidden_layers (tuple of ints): Shape and sizes of fully connected networks used. Default: (100, 100).
            lr (default: 1e-3): Learning rate value.
            gamma (float): Discount factor. Default: 0.99.
            tau (float): Soft-copy factor. Default: 0.002.
            update_freq (int): Number of steps between each learning step. Default 1.
            batch_size (int): Number of samples to use at each learning step. Default: 80.
            buffer_size (int): Number of most recent samples to keep in memory for learning. Default: 1e5.
            warm_up (int): Number of samples to observe before starting any learning step. Default: 0.
            number_updates (int): How many times to use learning step in the learning phase. Default: 1.
            max_grad_norm (float): Maximum norm of the gradient used in learning. Default: 10.
            using_double_q (bool): Whether to use Double Q Learning network. Default: True.
            n_steps (int): Number of lookahead steps when estimating reward. See :ref:`NStepBuffer`. Default: 3.
            v_min (float): Lower bound for distributional value V. Default: -10.
            v_max (float): Upper bound for distributional value V. Default: 10.
            num_atoms (int): Number of atoms (discrete states) in the value V distribution. Default: 21.

        """
        super().__init__(**kwargs)
        self.device = self._register_param(kwargs,
                                           "device",
                                           DEVICE,
                                           update=True)
        self.input_shape: Sequence[int] = input_shape if not isinstance(
            input_shape, int) else (input_shape, )

        self.state_size: int = self.input_shape[0]
        self.output_shape: Sequence[int] = output_shape if not isinstance(
            output_shape, int) else (output_shape, )
        self.action_size: int = self.output_shape[0]

        self.lr = float(self._register_param(kwargs, 'lr', 3e-4))
        self.gamma = float(self._register_param(kwargs, 'gamma', 0.99))
        self.tau = float(self._register_param(kwargs, 'tau', 0.002))
        self.update_freq = int(self._register_param(kwargs, 'update_freq', 1))
        self.batch_size = int(
            self._register_param(kwargs, 'batch_size', 80, update=True))
        self.buffer_size = int(
            self._register_param(kwargs, 'buffer_size', int(1e5), update=True))
        self.warm_up = int(self._register_param(kwargs, 'warm_up', 0))
        self.number_updates = int(
            self._register_param(kwargs, 'number_updates', 1))
        self.max_grad_norm = float(
            self._register_param(kwargs, 'max_grad_norm', 10))

        self.iteration: int = 0
        self.using_double_q = bool(
            self._register_param(kwargs, "using_double_q", True))

        self.state_transform = state_transform if state_transform is not None else lambda x: x
        self.reward_transform = reward_transform if reward_transform is not None else lambda x: x

        v_min = float(self._register_param(kwargs, "v_min", -10))
        v_max = float(self._register_param(kwargs, "v_max", 10))
        self.num_atoms = int(
            self._register_param(kwargs, "num_atoms", 21, drop=True))
        self.z_atoms = torch.linspace(v_min,
                                      v_max,
                                      self.num_atoms,
                                      device=self.device)
        self.z_delta = self.z_atoms[1] - self.z_atoms[0]

        self.buffer = PERBuffer(**kwargs)
        self.__batch_indices = torch.arange(self.batch_size,
                                            device=self.device)

        self.n_steps = int(self._register_param(kwargs, "n_steps", 3))
        self.n_buffer = NStepBuffer(n_steps=self.n_steps, gamma=self.gamma)

        # Note that in case a pre_network is provided, e.g. a shared net that extracts pixels values,
        # it should be explicitly passed in kwargs
        kwargs["hidden_layers"] = to_numbers_seq(
            self._register_param(kwargs, "hidden_layers", (100, 100)))
        self.net = RainbowNet(self.input_shape,
                              self.output_shape,
                              num_atoms=self.num_atoms,
                              **kwargs)
        self.target_net = RainbowNet(self.input_shape,
                                     self.output_shape,
                                     num_atoms=self.num_atoms,
                                     **kwargs)

        self.optimizer = optim.Adam(self.net.parameters(), lr=self.lr)
        self.dist_probs = None
        self._loss = float('inf')

    @property
    def loss(self):
        return {'loss': self._loss}

    @loss.setter
    def loss(self, value):
        if isinstance(value, dict):
            value = value['loss']
        self._loss = value

    def step(self, state, action, reward, next_state, done) -> None:
        """Letting the agent to take a step.

        On some steps the agent will initiate learning step. This is dependent on
        the `update_freq` value.

        Parameters:
            state: S(t)
            action: A(t)
            reward: R(t)
            nexxt_state: S(t+1)
            done: (bool) Whether the state is terminal.

        """
        self.iteration += 1
        state = to_tensor(self.state_transform(state)).float().to("cpu")
        next_state = to_tensor(
            self.state_transform(next_state)).float().to("cpu")
        reward = self.reward_transform(reward)

        # Delay adding to buffer to account for n_steps (particularly the reward)
        self.n_buffer.add(state=state.numpy(),
                          action=[int(action)],
                          reward=[reward],
                          done=[done],
                          next_state=next_state.numpy())
        if not self.n_buffer.available:
            return

        self.buffer.add(**self.n_buffer.get().get_dict())

        if self.iteration < self.warm_up:
            return

        if len(self.buffer) >= self.batch_size and (self.iteration %
                                                    self.update_freq) == 0:
            for _ in range(self.number_updates):
                self.learn(self.buffer.sample())

            # Update networks only once - sync local & target
            soft_update(self.target_net, self.net, self.tau)

    def act(self, state, eps: float = 0.) -> int:
        """
        Returns actions for given state as per current policy.

        Parameters:
            state: Current available state from the environment.
            epislon: Epsilon value in the epislon-greedy policy.

        """
        # Epsilon-greedy action selection
        if self._rng.random() < eps:
            return self._rng.randint(0, self.action_size - 1)

        state = to_tensor(self.state_transform(state)).float().unsqueeze(0).to(
            self.device)
        # state = to_tensor(self.state_transform(state)).float().to(self.device)
        self.dist_probs = self.net.act(state)
        q_values = (self.dist_probs * self.z_atoms).sum(-1)
        return int(
            q_values.argmax(-1))  # Action maximizes state-action value Q(s, a)

    def learn(self, experiences: Dict[str, List]) -> None:
        """
        Parameters:
            experiences: Contains all experiences for the agent. Typically sampled from the memory buffer.
                Five keys are expected, i.e. `state`, `action`, `reward`, `next_state`, `done`.
                Each key contains a array and all arrays have to have the same length.

        """
        rewards = to_tensor(experiences['reward']).float().to(self.device)
        dones = to_tensor(experiences['done']).type(torch.int).to(self.device)
        states = to_tensor(experiences['state']).float().to(self.device)
        next_states = to_tensor(experiences['next_state']).float().to(
            self.device)
        actions = to_tensor(experiences['action']).type(torch.long).to(
            self.device)
        assert rewards.shape == dones.shape == (self.batch_size, 1)
        assert states.shape == next_states.shape == (self.batch_size,
                                                     self.state_size)
        assert actions.shape == (self.batch_size, 1)  # Discrete domain

        with torch.no_grad():
            prob_next = self.target_net.act(next_states)
            q_next = (prob_next * self.z_atoms).sum(-1) * self.z_delta
            if self.using_double_q:
                duel_prob_next = self.net.act(next_states)
                a_next = torch.argmax((duel_prob_next * self.z_atoms).sum(-1),
                                      dim=-1)
            else:
                a_next = torch.argmax(q_next, dim=-1)

            prob_next = prob_next[self.__batch_indices, a_next, :]

        m = self.net.dist_projection(rewards, 1 - dones,
                                     self.gamma**self.n_steps, prob_next)
        assert m.shape == (self.batch_size, self.num_atoms)

        log_prob = self.net(states, log_prob=True)
        assert log_prob.shape == (self.batch_size, self.action_size,
                                  self.num_atoms)
        log_prob = log_prob[self.__batch_indices, actions.squeeze(), :]
        assert log_prob.shape == m.shape == (self.batch_size, self.num_atoms)

        # Cross-entropy loss error and the loss is batch mean
        error = -torch.sum(m * log_prob, 1)
        assert error.shape == (self.batch_size, )
        loss = error.mean()
        assert loss >= 0

        self.optimizer.zero_grad()
        loss.backward()
        nn.utils.clip_grad_norm_(self.net.parameters(), self.max_grad_norm)
        self.optimizer.step()
        self._loss = float(loss.item())

        if hasattr(self.buffer, 'priority_update'):
            assert (~torch.isnan(error)).any()
            self.buffer.priority_update(experiences['index'],
                                        error.detach().cpu().numpy())

        # Update networks - sync local & target
        soft_update(self.target_net, self.net, self.tau)

    def state_dict(self) -> Dict[str, dict]:
        """Returns agent's state dictionary.

        Returns:
            State dicrionary for internal networks.

        """
        return {
            "net": self.net.state_dict(),
            "target_net": self.target_net.state_dict()
        }

    def log_metrics(self,
                    data_logger: DataLogger,
                    step: int,
                    full_log: bool = False):
        data_logger.log_value("loss/agent", self._loss, step)

        if full_log and self.dist_probs is not None:
            for action_idx in range(self.action_size):
                dist = self.dist_probs[0, action_idx]
                data_logger.log_value(f'dist/expected_{action_idx}',
                                      (dist * self.z_atoms).sum().item(), step)
                data_logger.add_histogram(f'dist/Q_{action_idx}',
                                          min=self.z_atoms[0],
                                          max=self.z_atoms[-1],
                                          num=len(self.z_atoms),
                                          sum=dist.sum(),
                                          sum_squares=dist.pow(2).sum(),
                                          bucket_limits=self.z_atoms +
                                          self.z_delta,
                                          bucket_counts=dist,
                                          global_step=step)

        # This method, `log_metrics`, isn't executed on every iteration but just in case we delay plotting weights.
        # It simply might be quite costly. Thread wisely.
        if full_log:
            for idx, layer in enumerate(self.net.value_net.layers):
                if hasattr(layer, "weight"):
                    data_logger.create_histogram(
                        f"value_net/layer_weights_{idx}", layer.weight.cpu(),
                        step)
                if hasattr(layer, "bias") and layer.bias is not None:
                    data_logger.create_histogram(f"value_net/layer_bias_{idx}",
                                                 layer.bias.cpu(), step)
            for idx, layer in enumerate(self.net.advantage_net.layers):
                if hasattr(layer, "weight"):
                    data_logger.create_histogram(f"advantage_net/layer_{idx}",
                                                 layer.weight.cpu(), step)
                if hasattr(layer, "bias") and layer.bias is not None:
                    data_logger.create_histogram(
                        f"advantage_net/layer_bias_{idx}", layer.bias.cpu(),
                        step)

    def get_state(self) -> AgentState:
        """Provides agent's internal state."""
        return AgentState(
            model=self.name,
            state_space=self.state_size,
            action_space=self.action_size,
            config=self._config,
            buffer=copy.deepcopy(self.buffer.get_state()),
            network=copy.deepcopy(self.get_network_state()),
        )

    def get_network_state(self) -> NetworkState:
        return NetworkState(net=dict(net=self.net.state_dict(),
                                     target_net=self.target_net.state_dict()))

    @staticmethod
    def from_state(state: AgentState) -> AgentBase:
        config = copy.copy(state.config)
        config.update({
            'input_shape': state.state_space,
            'output_shape': state.action_space
        })
        agent = RainbowAgent(**config)
        if state.network is not None:
            agent.set_network(state.network)
        if state.buffer is not None:
            agent.set_buffer(state.buffer)
        return agent

    def set_network(self, network_state: NetworkState) -> None:
        self.net.load_state_dict(network_state.net['net'])
        self.target_net.load_state_dict(network_state.net['target_net'])

    def set_buffer(self, buffer_state: BufferState) -> None:
        self.buffer = BufferFactory.from_state(buffer_state)

    def save_state(self, path: str) -> None:
        """Saves agent's state into a file.

        Parameters:
            path: String path where to write the state.

        """
        agent_state = self.get_state()
        torch.save(agent_state, path)

    def load_state(self, path: str) -> None:
        """Loads state from a file under provided path.

        Parameters:
            path: String path indicating where the state is stored.

        """
        agent_state = torch.load(path)
        self._config = agent_state.get('config', {})
        self.__dict__.update(**self._config)

        self.net.load_state_dict(agent_state['net'])
        self.target_net.load_state_dict(agent_state['target_net'])

    def save_buffer(self, path: str) -> None:
        """Saves data from the buffer into a file under provided path.

        Parameters:
            path: String path where to write the buffer.

        """
        import json
        dump = self.buffer.dump_buffer(serialize=True)
        with open(path, 'w') as f:
            json.dump(dump, f)

    def load_buffer(self, path: str) -> None:
        """Loads data into the buffer from provided file path.

        Parameters:
            path: String path indicating where the buffer is stored.

        """
        import json
        with open(path, 'r') as f:
            buffer_dump = json.load(f)
        self.buffer.load_buffer(buffer_dump)

    def __eq__(self, o: object) -> bool:
        return super().__eq__(o) \
               and self._config == o._config \
               and self.buffer == o.buffer \
               and self.get_network_state() == o.get_network_state()
Example #7
0
class DQNAgent(AgentBase):
    """Deep Q-Learning Network (DQN).

    The agent is not a vanilla DQN, although can be configured as such.
    The default config includes dual dueling nets and the priority experience buffer.
    Learning is also delayed by slowly copying to target nets (via tau parameter).
    Although NStep is implemented the default value is 1-step reward.

    There is also a specific implemntation of the DQN called the Rainbow which differs
    to this implementation by working on the discrete space projection of the Q(s,a) function.
    """

    name = "DQN"

    def __init__(self,
                 input_shape: Union[Sequence[int], int],
                 output_shape: Union[Sequence[int], int],
                 network_fn: Callable[[], NetworkType] = None,
                 network_class: Type[NetworkTypeClass] = None,
                 state_transform: Optional[Callable] = None,
                 reward_transform: Optional[Callable] = None,
                 **kwargs):
        """Initiates the DQN agent.

        Parameters:
            hidden_layers: (default: (64, 64) ) Tuple defining hidden dimensions in fully connected nets.
            lr: (default: 1e-3) learning rate
            gamma: (default: 0.99) discount factor
            tau: (default: 0.002) soft-copy factor
            update_freq: (default: 1)
            batch_size: (default: 32)
            buffer_size: (default: 1e5)
            warm_up: (default: 0)
            number_updates: (default: 1)
            max_grad_norm: (default: 10)
            using_double_q: (default: True) Whether to use double Q value
            n_steps: (int: 1) N steps reward lookahead

        """
        super().__init__(**kwargs)

        self.device = self._register_param(kwargs,
                                           "device",
                                           DEVICE,
                                           update=True)
        # TODO: All this should be condenced with some structure, e.g. gym spaces
        self.input_shape: Sequence[int] = input_shape if not isinstance(
            input_shape, int) else (input_shape, )
        self.state_size: int = self.input_shape[0]
        self.output_shape: Sequence[int] = output_shape if not isinstance(
            output_shape, int) else (output_shape, )
        self.action_size: int = self.output_shape[0]
        self._config['state_size'] = self.state_size
        self._config['action_size'] = self.action_size

        self.lr = float(self._register_param(kwargs, 'lr',
                                             3e-4))  # Learning rate
        self.gamma = float(self._register_param(kwargs, 'gamma',
                                                0.99))  # Discount value
        self.tau = float(self._register_param(kwargs, 'tau',
                                              0.002))  # Soft update

        self.update_freq = int(self._register_param(kwargs, 'update_freq', 1))
        self.batch_size = int(
            self._register_param(kwargs, 'batch_size', 64, update=True))
        self.buffer_size = int(
            self._register_param(kwargs, 'buffer_size', int(1e5), update=True))
        self.warm_up = int(self._register_param(kwargs, 'warm_up', 0))
        self.number_updates = int(
            self._register_param(kwargs, 'number_updates', 1))
        self.max_grad_norm = float(
            self._register_param(kwargs, 'max_grad_norm', 10))

        self.iteration: int = 0
        self.buffer = PERBuffer(**kwargs)
        self.using_double_q = bool(
            self._register_param(kwargs, "using_double_q", True))

        self.n_steps = int(self._register_param(kwargs, 'n_steps', 1))
        self.n_buffer = NStepBuffer(n_steps=self.n_steps, gamma=self.gamma)

        hidden_layers = to_numbers_seq(
            self._register_param(kwargs, 'hidden_layers', (64, 64)))
        self.state_transform = state_transform if state_transform is not None else lambda x: x
        self.reward_transform = reward_transform if reward_transform is not None else lambda x: x
        if network_fn is not None:
            self.net = network_fn()
            self.target_net = network_fn()
        elif network_class is not None:
            self.net = network_class(self.input_shape,
                                     self.action_size,
                                     hidden_layers=hidden_layers,
                                     device=self.device)
            self.target_net = network_class(self.input_shape,
                                            self.action_size,
                                            hidden_layers=hidden_layers,
                                            device=self.device)
        else:
            self.net = DuelingNet(self.input_shape,
                                  self.output_shape,
                                  hidden_layers=hidden_layers,
                                  device=self.device)
            self.target_net = DuelingNet(self.input_shape,
                                         self.output_shape,
                                         hidden_layers=hidden_layers,
                                         device=self.device)
        self.optimizer = optim.Adam(self.net.parameters(), lr=self.lr)
        self._loss: float = float('inf')

    @property
    def loss(self) -> Dict[str, float]:
        return {'loss': self._loss}

    @loss.setter
    def loss(self, value):
        if isinstance(value, dict):
            value = value['loss']
        self._loss = value

    def __eq__(self, o: object) -> bool:
        return super().__eq__(o) \
            and self._config == o._config \
            and self.buffer == o.buffer \
            and self.n_buffer == o.n_buffer \
            and self.get_network_state() == o.get_network_state()

    def reset(self):
        self.net.reset_parameters()
        self.target_net.reset_parameters()
        self.optimizer = optim.Adam(self.net.parameters(), lr=self.lr)

    def step(self, state, action, reward, next_state, done) -> None:
        """Letting the agent to take a step.

        On some steps the agent will initiate learning step. This is dependent on
        the `update_freq` value.

        Parameters:
            state: S(t)
            action: A(t)
            reward: R(t)
            next_state: S(t+1)
            done: (bool) Whether the state is terminal.

        """
        self.iteration += 1
        state = to_tensor(self.state_transform(state)).float().to("cpu")
        next_state = to_tensor(
            self.state_transform(next_state)).float().to("cpu")
        reward = self.reward_transform(reward)

        # Delay adding to buffer to account for n_steps (particularly the reward)
        self.n_buffer.add(state=state.numpy(),
                          action=[int(action)],
                          reward=[reward],
                          done=[done],
                          next_state=next_state.numpy())
        if not self.n_buffer.available:
            return

        self.buffer.add(**self.n_buffer.get().get_dict())

        if self.iteration < self.warm_up:
            return

        if len(self.buffer) >= self.batch_size and (self.iteration %
                                                    self.update_freq) == 0:
            for _ in range(self.number_updates):
                self.learn(self.buffer.sample())

            # Update networks only once - sync local & target
            soft_update(self.target_net, self.net, self.tau)

    def act(self, state, eps: float = 0.) -> int:
        """Returns actions for given state as per current policy.

        Parameters:
            state (array_like): current state
            eps (float): epsilon, for epsilon-greedy action selection

        Returns:
            Categorical value for the action.

        """
        # Epsilon-greedy action selection
        if self._rng.random() < eps:
            return self._rng.randint(0, self.action_size - 1)

        state = to_tensor(self.state_transform(state)).float()
        state = state.unsqueeze(0).to(self.device)
        action_values = self.net.act(state)
        return int(torch.argmax(action_values.cpu()))

    def learn(self, experiences: Dict[str, list]) -> None:
        """Updates agent's networks based on provided experience.

        Parameters:
            experiences: Samples experiences from the experience buffer.

        """
        rewards = to_tensor(experiences['reward']).type(torch.float32).to(
            self.device)
        dones = to_tensor(experiences['done']).type(torch.int).to(self.device)
        states = to_tensor(experiences['state']).type(torch.float32).to(
            self.device)
        next_states = to_tensor(experiences['next_state']).type(
            torch.float32).to(self.device)
        actions = to_tensor(experiences['action']).type(torch.long).to(
            self.device)

        with torch.no_grad():
            Q_targets_next = self.target_net.act(next_states).detach()
            if self.using_double_q:
                _a = torch.argmax(self.net(next_states), dim=-1).unsqueeze(-1)
                max_Q_targets_next = Q_targets_next.gather(1, _a)
            else:
                max_Q_targets_next = Q_targets_next.max(1)[0].unsqueeze(1)
        Q_targets = rewards + self.n_buffer.n_gammas[
            -1] * max_Q_targets_next * (1 - dones)
        Q_expected: torch.Tensor = self.net(states).gather(1, actions)
        loss = F.mse_loss(Q_expected, Q_targets)

        self.optimizer.zero_grad()
        loss.backward()
        nn.utils.clip_grad_norm_(self.net.parameters(), self.max_grad_norm)
        self.optimizer.step()
        self._loss = float(loss.item())

        if hasattr(self.buffer, 'priority_update'):
            error = Q_expected - Q_targets
            assert any(~torch.isnan(error))
            self.buffer.priority_update(experiences['index'], error.abs())

    def state_dict(self) -> Dict[str, dict]:
        """Describes agent's networks.

        Returns:
            state: (dict) Provides actors and critics states.

        """
        return {
            "net": self.net.state_dict(),
            "target_net": self.target_net.state_dict(),
        }

    def log_metrics(self,
                    data_logger: DataLogger,
                    step: int,
                    full_log: bool = False):
        """Uses provided DataLogger to provide agent's metrics.

        Parameters:
            data_logger (DataLogger): Instance of the SummaryView, e.g. torch.utils.tensorboard.SummaryWritter.
            step (int): Ordering value, e.g. episode number.
            full_log (bool): Whether to all available information. Useful to log with lesser frequency.
        """
        data_logger.log_value("loss/agent", self._loss, step)

    def get_state(self) -> AgentState:
        """Provides agent's internal state."""
        return AgentState(
            model=self.name,
            state_space=self.state_size,
            action_space=self.action_size,
            config=self._config,
            buffer=copy.deepcopy(self.buffer.get_state()),
            network=copy.deepcopy(self.get_network_state()),
        )

    def get_network_state(self) -> NetworkState:
        return NetworkState(net=dict(net=self.net.state_dict(),
                                     target_net=self.target_net.state_dict()))

    @staticmethod
    def from_state(state: AgentState) -> AgentBase:
        agent = DQNAgent(state.state_space, state.action_space, **state.config)
        if state.network is not None:
            agent.set_network(state.network)
        if state.buffer is not None:
            agent.set_buffer(state.buffer)
        return agent

    def set_buffer(self, buffer_state: BufferState) -> None:
        self.buffer = BufferFactory.from_state(buffer_state)

    def set_network(self, network_state: NetworkState) -> None:
        self.net.load_state_dict(network_state.net['net'])
        self.target_net.load_state_dict(network_state.net['target_net'])

    def save_state(self, path: str):
        """Saves agent's state into a file.

        Parameters:
            path: String path where to write the state.

        """
        agent_state = self.get_state()
        torch.save(agent_state, path)

    def load_state(self,
                   *,
                   path: Optional[str] = None,
                   state: Optional[AgentState] = None) -> None:
        """Loads state from a file under provided path.

        Parameters:
            path: String path indicating where the state is stored.

        """
        if path is None and state is None:
            raise ValueError(
                "Either `path` or `state` must be provided to load agent's state."
            )
        if path is not None:
            state = torch.load(path)

        # Populate agent
        agent_state = state.agent
        self._config = agent_state.config
        self.__dict__.update(**self._config)

        # Populate network
        network_state = state.network
        self.net.load_state_dict(network_state.net['net'])
        self.target_net.load_state_dict(network_state.net['target_net'])
        self.buffer = PERBuffer(**self._config)

    def save_buffer(self, path: str) -> None:
        """Saves data from the buffer into a file under provided path.

        Parameters:
            path: String path where to write the buffer.

        """
        import json
        dump = self.buffer.dump_buffer(serialize=True)
        with open(path, 'w') as f:
            json.dump(dump, f)

    def load_buffer(self, path: str) -> None:
        """Loads data into the buffer from provided file path.

        Parameters:
            path: String path indicating where the buffer is stored.

        """
        import json
        with open(path, 'r') as f:
            buffer_dump = json.load(f)
        self.buffer.load_buffer(buffer_dump)