Example #1
0
class D3PGAgent(AgentBase):
    """Distributional DDPG (D3PG) [1].

    It's closely related to, and sits in-between, D4PG and DDPG. Compared to D4PG it lacks
    the multi actors support. It extends the DDPG agent with:
    1. Distributional critic update.
    2. N-step returns.
    3. Prioritization of the experience replay (PER).

    [1] "Distributed Distributional Deterministic Policy Gradients"
        (2018, ICLR) by G. Barth-Maron & M. Hoffman et al.

    """

    name = "D3PG"

    def __init__(self,
                 state_size: int,
                 action_size: int,
                 hidden_layers: Sequence[int] = (128, 128),
                 **kwargs):
        super().__init__(**kwargs)
        self.device = self._register_param(kwargs, "device", DEVICE)
        self.state_size = state_size
        self.action_size = action_size

        self.num_atoms = int(self._register_param(kwargs, 'num_atoms', 51))
        v_min = float(self._register_param(kwargs, 'v_min', -10))
        v_max = float(self._register_param(kwargs, 'v_max', 10))

        # Reason sequence initiation.
        self.action_min = float(self._register_param(kwargs, 'action_min', -1))
        self.action_max = float(self._register_param(kwargs, 'action_max', 1))
        self.action_scale = int(self._register_param(kwargs, 'action_scale',
                                                     1))

        self.gamma = float(self._register_param(kwargs, 'gamma', 0.99))
        self.tau = float(self._register_param(kwargs, 'tau', 0.02))
        self.batch_size: int = int(
            self._register_param(kwargs, 'batch_size', 64))
        self.buffer_size: int = int(
            self._register_param(kwargs, 'buffer_size', int(1e6)))
        self.buffer = PERBuffer(self.batch_size, self.buffer_size)

        self.n_steps = int(self._register_param(kwargs, "n_steps", 3))
        self.n_buffer = NStepBuffer(n_steps=self.n_steps, gamma=self.gamma)

        self.warm_up: int = int(self._register_param(kwargs, 'warm_up', 0))
        self.update_freq: int = int(
            self._register_param(kwargs, 'update_freq', 1))

        if kwargs.get("simple_policy", False):
            std_init = kwargs.get("std_init", 1.0)
            std_max = kwargs.get("std_max", 1.5)
            std_min = kwargs.get("std_min", 0.25)
            self.policy = MultivariateGaussianPolicySimple(self.action_size,
                                                           std_init=std_init,
                                                           std_min=std_min,
                                                           std_max=std_max,
                                                           device=self.device)
        else:
            self.policy = MultivariateGaussianPolicy(self.action_size,
                                                     device=self.device)

        self.actor_hidden_layers = to_numbers_seq(
            self._register_param(kwargs, 'actor_hidden_layers', hidden_layers))
        self.critic_hidden_layers = to_numbers_seq(
            self._register_param(kwargs, 'critic_hidden_layers',
                                 hidden_layers))

        # This looks messy but it's not that bad. Actor, critic_net and Critic(critic_net). Then the same for `target_`.
        self.actor = ActorBody(state_size,
                               self.policy.param_dim * action_size,
                               hidden_layers=self.actor_hidden_layers,
                               gate_out=torch.tanh,
                               device=self.device)
        critic_net = CriticBody(state_size,
                                action_size,
                                out_features=self.num_atoms,
                                hidden_layers=self.critic_hidden_layers,
                                device=self.device)
        self.critic = CategoricalNet(num_atoms=self.num_atoms,
                                     v_min=v_min,
                                     v_max=v_max,
                                     net=critic_net,
                                     device=self.device)

        self.target_actor = ActorBody(state_size,
                                      self.policy.param_dim * action_size,
                                      hidden_layers=self.actor_hidden_layers,
                                      gate_out=torch.tanh,
                                      device=self.device)
        target_critic_net = CriticBody(state_size,
                                       action_size,
                                       out_features=self.num_atoms,
                                       hidden_layers=self.critic_hidden_layers,
                                       device=self.device)
        self.target_critic = CategoricalNet(num_atoms=self.num_atoms,
                                            v_min=v_min,
                                            v_max=v_max,
                                            net=target_critic_net,
                                            device=self.device)

        # Target sequence initiation
        hard_update(self.target_actor, self.actor)
        hard_update(self.target_critic, self.critic)

        # Optimization sequence initiation.
        self.actor_lr = float(self._register_param(kwargs, 'actor_lr', 3e-4))
        self.critic_lr = float(self._register_param(kwargs, 'critic_lr', 3e-4))
        self.value_loss_func = nn.BCELoss(reduction='none')

        # self.actor_params = list(self.actor.parameters()) #+ list(self.policy.parameters())
        self.actor_params = list(self.actor.parameters()) + list(
            self.policy.parameters())
        self.actor_optimizer = Adam(self.actor_params, lr=self.actor_lr)
        self.critic_optimizer = Adam(self.critic.parameters(),
                                     lr=self.critic_lr)
        self.max_grad_norm_actor = float(
            self._register_param(kwargs, "max_grad_norm_actor", 50.0))
        self.max_grad_norm_critic = float(
            self._register_param(kwargs, "max_grad_norm_critic", 50.0))

        # Breath, my child.
        self.iteration = 0
        self._loss_actor = float('nan')
        self._loss_critic = float('nan')
        self._display_dist = torch.zeros(self.critic.z_atoms.shape)
        self._metric_batch_error = torch.zeros(self.batch_size)
        self._metric_batch_value_dist = torch.zeros(self.batch_size)

    @property
    def loss(self) -> Dict[str, float]:
        return {'actor': self._loss_actor, 'critic': self._loss_critic}

    @loss.setter
    def loss(self, value):
        if isinstance(value, dict):
            self._loss_actor = value['actor']
            self._loss_critic = value['critic']
        else:
            self._loss_actor = value
            self._loss_critic = value

    @torch.no_grad()
    def act(self, state, epsilon: float = 0.0) -> List[float]:
        """
        Returns actions for given state as per current policy.

        Parameters:
            state: Current available state from the environment.
            epislon: Epsilon value in the epislon-greedy policy.

        """
        state = to_tensor(state).float().to(self.device)
        if self._rng.random() < epsilon:
            action = self.action_scale * (torch.rand(self.action_size) - 0.5)

        else:
            action_seed = self.actor.act(state).view(1, -1)
            action_dist = self.policy(action_seed)
            action = action_dist.sample()
            action *= self.action_scale
            action = action.squeeze()

        # Purely for logging
        self._display_dist = self.target_critic.act(
            state, action.to(self.device)).squeeze().cpu()
        self._display_dist = F.softmax(self._display_dist, dim=0)

        return torch.clamp(action, self.action_min,
                           self.action_max).cpu().tolist()

    def step(self, state, action, reward, next_state, done):
        self.iteration += 1

        # Delay adding to buffer to account for n_steps (particularly the reward)
        self.n_buffer.add(state=state,
                          action=action,
                          reward=[reward],
                          done=[done],
                          next_state=next_state)
        if not self.n_buffer.available:
            return

        self.buffer.add(**self.n_buffer.get().get_dict())

        if self.iteration < self.warm_up:
            return

        if len(self.buffer) > self.batch_size and (self.iteration %
                                                   self.update_freq) == 0:
            self.learn(self.buffer.sample())

    def compute_value_loss(self,
                           states,
                           actions,
                           next_states,
                           rewards,
                           dones,
                           indices=None):
        # Q_w estimate
        value_dist_estimate = self.critic(states, actions)
        assert value_dist_estimate.shape == (self.batch_size, 1,
                                             self.num_atoms)
        value_dist = F.softmax(value_dist_estimate.squeeze(), dim=1)
        assert value_dist.shape == (self.batch_size, self.num_atoms)

        # Q_w' estimate via Bellman's dist operator
        next_action_seeds = self.target_actor.act(next_states)
        next_actions = self.policy(next_action_seeds).sample()
        assert next_actions.shape == (self.batch_size, self.action_size)

        target_value_dist_estimate = self.target_critic.act(
            states, next_actions)
        assert target_value_dist_estimate.shape == (self.batch_size, 1,
                                                    self.num_atoms)
        target_value_dist_estimate = target_value_dist_estimate.squeeze()
        assert target_value_dist_estimate.shape == (self.batch_size,
                                                    self.num_atoms)

        discount = self.gamma**self.n_steps
        target_value_projected = self.target_critic.dist_projection(
            rewards, 1 - dones, discount, target_value_dist_estimate)
        assert target_value_projected.shape == (self.batch_size,
                                                self.num_atoms)

        target_value_dist = F.softmax(target_value_dist_estimate,
                                      dim=-1).detach()
        assert target_value_dist.shape == (self.batch_size, self.num_atoms)

        # Comparing Q_w with Q_w'
        loss = self.value_loss_func(value_dist, target_value_projected)
        self._metric_batch_error = loss.detach().sum(dim=-1)
        samples_error = loss.sum(dim=-1).pow(2)
        loss_critic = samples_error.mean()

        if hasattr(self.buffer, 'priority_update') and indices is not None:
            assert (~torch.isnan(samples_error)).any()
            self.buffer.priority_update(indices,
                                        samples_error.detach().cpu().numpy())

        return loss_critic

    def compute_policy_loss(self, states):
        # Compute actor loss
        pred_action_seeds = self.actor(states)
        pred_actions = self.policy(pred_action_seeds).rsample()
        # Negative because the optimizer minimizes, but we want to maximize the value
        value_dist = self.critic(states, pred_actions)
        self._metric_batch_value_dist = value_dist.detach()
        # Estimate on Z support
        return -torch.mean(value_dist * self.critic.z_atoms)

    def learn(self, experiences):
        """Update critics and actors"""
        rewards = to_tensor(experiences['reward']).float().to(self.device)
        dones = to_tensor(experiences['done']).type(torch.int).to(self.device)
        states = to_tensor(experiences['state']).float().to(self.device)
        actions = to_tensor(experiences['action']).to(self.device)
        next_states = to_tensor(experiences['next_state']).float().to(
            self.device)
        assert rewards.shape == dones.shape == (self.batch_size, 1)
        assert states.shape == next_states.shape == (self.batch_size,
                                                     self.state_size)
        assert actions.shape == (self.batch_size, self.action_size)

        indices = None
        if hasattr(self.buffer, 'priority_update'):  # When using PER buffer
            indices = experiences['index']
        loss_critic = self.compute_value_loss(states, actions, next_states,
                                              rewards, dones, indices)

        # Value (critic) optimization
        self.critic_optimizer.zero_grad()
        loss_critic.backward()
        nn.utils.clip_grad_norm_(self.actor_params, self.max_grad_norm_critic)
        self.critic_optimizer.step()
        self._loss_critic = float(loss_critic.item())

        # Policy (actor) optimization
        loss_actor = self.compute_policy_loss(states)
        self.actor_optimizer.zero_grad()
        loss_actor.backward()
        nn.utils.clip_grad_norm_(self.actor.parameters(),
                                 self.max_grad_norm_actor)
        self.actor_optimizer.step()
        self._loss_actor = float(loss_actor.item())

        # Networks gradual sync
        soft_update(self.target_actor, self.actor, self.tau)
        soft_update(self.target_critic, self.critic, self.tau)

    def state_dict(self) -> Dict[str, dict]:
        """Describes agent's networks.

        Returns:
            state: (dict) Provides actors and critics states.

        """
        return {
            "actor": self.actor.state_dict(),
            "target_actor": self.target_actor.state_dict(),
            "critic": self.critic.state_dict(),
            "target_critic": self.target_critic()
        }

    def log_metrics(self,
                    data_logger: DataLogger,
                    step: int,
                    full_log: bool = False):
        data_logger.log_value("loss/actor", self._loss_actor, step)
        data_logger.log_value("loss/critic", self._loss_critic, step)
        policy_params = {
            str(i): v
            for i, v in enumerate(
                itertools.chain.from_iterable(self.policy.parameters()))
        }
        data_logger.log_values_dict("policy/param", policy_params, step)

        data_logger.create_histogram('metric/batch_errors',
                                     self._metric_batch_error, step)
        data_logger.create_histogram('metric/batch_value_dist',
                                     self._metric_batch_value_dist, step)

        if full_log:
            dist = self._display_dist
            z_atoms = self.critic.z_atoms
            z_delta = self.critic.z_delta
            data_logger.add_histogram('dist/dist_value',
                                      min=z_atoms[0],
                                      max=z_atoms[-1],
                                      num=self.num_atoms,
                                      sum=dist.sum(),
                                      sum_squares=dist.pow(2).sum(),
                                      bucket_limits=z_atoms + z_delta,
                                      bucket_counts=dist,
                                      global_step=step)

    def get_state(self):
        return dict(
            actor=self.actor.state_dict(),
            target_actor=self.target_actor.state_dict(),
            critic=self.critic.state_dict(),
            target_critic=self.target_critic.state_dict(),
            config=self._config,
        )

    def save_state(self, path: str):
        agent_state = self.get_state()
        torch.save(agent_state, path)

    def load_state(self, path: str):
        agent_state = torch.load(path)
        self._config = agent_state.get('config', {})
        self.__dict__.update(**self._config)

        self.actor.load_state_dict(agent_state['actor'])
        self.critic.load_state_dict(agent_state['critic'])
        self.target_actor.load_state_dict(agent_state['target_actor'])
        self.target_critic.load_state_dict(agent_state['target_critic'])
Example #2
0
class D4PGAgent(AgentBase):
    """
    Distributed Distributional DDPG (D4PG) [1].

    Extends the DDPG agent with:
    1. Distributional critic update.
    2. The use of distributed parallel actors.
    3. N-step returns.
    4. Prioritization of the experience replay (PER).

    [1] "Distributed Distributional Deterministic Policy Gradients"
        (2018, ICLR) by G. Barth-Maron & M. Hoffman et al.

    """

    name = "D4PG"

    def __init__(self,
                 state_size: int,
                 action_size: int,
                 hidden_layers: Sequence[int] = (128, 128),
                 **kwargs):
        """
        Parameters:
            state_size (int): Number of input dimensions.
            action_size (int): Number of output dimensions
            hidden_layers (tuple of ints): Tuple defining hidden dimensions in fully connected nets. Default: (128, 128).

        Keyword parameters:
            gamma (float): Discount value. Default: 0.99.
            tau (float): Soft-copy factor. Default: 0.02.
            actor_lr (float): Learning rate for the actor (policy). Default: 0.0003.
            critic_lr (float): Learning rate for the critic (value function). Default: 0.0003.
            actor_hidden_layers (tuple of ints): Shape of network for actor. Default: `hideen_layers`.
            critic_hidden_layers (tuple of ints): Shape of network for critic. Default: `hideen_layers`.
            max_grad_norm_actor (float) Maximum norm value for actor gradient. Default: 100.
            max_grad_norm_critic (float): Maximum norm value for critic gradient. Default: 100.
            num_atoms (int): Number of discrete values for the value distribution. Default: 51.
            v_min (float): Value distribution minimum (left most) value. Default: -10.
            v_max (float): Value distribution maximum (right most) value. Default: 10.
            n_steps (int): Number of steps (N-steps) for the TD. Defualt: 3.
            batch_size (int): Number of samples used in learning. Default: 64.
            buffer_size (int): Maximum number of samples to store. Default: 1e6.
            warm_up (int): Number of samples to observe before starting any learning step. Default: 0.
            update_freq (int): Number of steps between each learning step. Default 1.
            number_updates (int): How many times to use learning step in the learning phase. Default: 1.
            action_min (float): Minimum returned action value. Default: -1.
            action_max (float): Maximum returned action value. Default: 1.
            action_scale (float): Multipler value for action. Default: 1.
            num_workers (int): Number of workers that will assume this agent. Default: 1.

        """
        super().__init__(**kwargs)
        self.device = self._register_param(kwargs, "device", DEVICE)
        self.state_size = state_size
        self.action_size = action_size

        self.num_atoms = int(self._register_param(kwargs, 'num_atoms', 51))
        v_min = float(self._register_param(kwargs, 'v_min', -10))
        v_max = float(self._register_param(kwargs, 'v_max', 10))

        # Reason sequence initiation.
        self.action_min = float(self._register_param(kwargs, 'action_min', -1))
        self.action_max = float(self._register_param(kwargs, 'action_max', 1))
        self.action_scale = float(
            self._register_param(kwargs, 'action_scale', 1))

        self.gamma = float(self._register_param(kwargs, 'gamma', 0.99))
        self.tau = float(self._register_param(kwargs, 'tau', 0.02))
        self.batch_size = int(self._register_param(kwargs, 'batch_size', 64))
        self.buffer_size = int(
            self._register_param(kwargs, 'buffer_size', int(1e6)))
        self.buffer = PERBuffer(self.batch_size, self.buffer_size)

        self.n_steps = int(self._register_param(kwargs, "n_steps", 3))
        self.n_buffer = NStepBuffer(n_steps=self.n_steps, gamma=self.gamma)

        self.warm_up = int(self._register_param(kwargs, 'warm_up', 0))
        self.update_freq = int(self._register_param(kwargs, 'update_freq', 1))

        self.actor_hidden_layers = to_numbers_seq(
            self._register_param(kwargs, 'actor_hidden_layers', hidden_layers))
        self.critic_hidden_layers = to_numbers_seq(
            self._register_param(kwargs, 'critic_hidden_layers',
                                 hidden_layers))

        if kwargs.get("simple_policy", False):
            std_init = float(self._register_param(kwargs, "std_init", 1.0))
            std_max = float(self._register_param(kwargs, "std_max", 2.0))
            std_min = float(self._register_param(kwargs, "std_min", 0.05))
            self.policy = MultivariateGaussianPolicySimple(self.action_size,
                                                           std_init=std_init,
                                                           std_min=std_min,
                                                           std_max=std_max,
                                                           device=self.device)
        else:
            self.policy = MultivariateGaussianPolicy(self.action_size,
                                                     device=self.device)

        # This looks messy but it's not that bad. Actor, critic_net and Critic(critic_net). Then the same for `target_`.
        self.actor = ActorBody(state_size,
                               self.policy.param_dim * action_size,
                               hidden_layers=self.actor_hidden_layers,
                               gate_out=torch.tanh,
                               device=self.device)
        critic_net = CriticBody(state_size,
                                action_size,
                                out_features=self.num_atoms,
                                hidden_layers=self.critic_hidden_layers,
                                device=self.device)
        self.critic = CategoricalNet(num_atoms=self.num_atoms,
                                     v_min=v_min,
                                     v_max=v_max,
                                     net=critic_net,
                                     device=self.device)

        self.target_actor = ActorBody(state_size,
                                      self.policy.param_dim * action_size,
                                      hidden_layers=self.actor_hidden_layers,
                                      gate_out=torch.tanh,
                                      device=self.device)
        target_critic_net = CriticBody(state_size,
                                       action_size,
                                       out_features=self.num_atoms,
                                       hidden_layers=self.critic_hidden_layers,
                                       device=self.device)
        self.target_critic = CategoricalNet(num_atoms=self.num_atoms,
                                            v_min=v_min,
                                            v_max=v_max,
                                            net=target_critic_net,
                                            device=self.device)

        # Target sequence initiation
        hard_update(self.target_actor, self.actor)
        hard_update(self.target_critic, self.critic)

        # Optimization sequence initiation.
        self.actor_lr = float(self._register_param(kwargs, 'actor_lr', 3e-4))
        self.critic_lr = float(self._register_param(kwargs, 'critic_lr', 3e-4))
        self.value_loss_func = nn.BCELoss(reduction='none')

        self.actor_params = list(self.actor.parameters()) + list(
            self.policy.parameters())
        self.actor_optimizer = Adam(self.actor_params, lr=self.actor_lr)
        self.critic_optimizer = Adam(self.critic.parameters(),
                                     lr=self.critic_lr)
        self.max_grad_norm_actor = float(
            self._register_param(kwargs, "max_grad_norm_actor", 100))
        self.max_grad_norm_critic = float(
            self._register_param(kwargs, "max_grad_norm_critic", 100))

        self.num_workers = int(self._register_param(kwargs, "num_workers", 1))

        # Breath, my child.
        self.iteration = 0
        self._loss_actor = float('nan')
        self._loss_critic = float('nan')

    @property
    def loss(self) -> Dict[str, float]:
        return {'actor': self._loss_actor, 'critic': self._loss_critic}

    @loss.setter
    def loss(self, value):
        if isinstance(value, dict):
            self._loss_actor = value['actor']
            self._loss_critic = value['critic']
        else:
            self._loss_actor = value
            self._loss_critic = value

    @torch.no_grad()
    def act(self, state, epsilon: float = 0.) -> List[float]:
        """
        Returns actions for given state as per current policy.

        Parameters:
            state: Current available state from the environment.
            epislon: Epsilon value in the epislon-greedy policy.

        """
        actions = []
        state = to_tensor(state).view(self.num_workers,
                                      self.state_size).float().to(self.device)
        for worker in range(self.num_workers):
            if self._rng.random() < epsilon:
                action = self.action_scale * (torch.rand(self.action_size) -
                                              0.5)
            else:
                action_seed = self.actor.act(state[worker].view(1, -1))
                action_dist = self.policy(action_seed)
                action = action_dist.sample()
                action *= self.action_scale
                action = torch.clamp(action.squeeze(), self.action_min,
                                     self.action_max).cpu()
            actions.append(action.tolist())

        assert len(actions) == self.num_workers
        return actions

    def step(self, states, actions, rewards, next_states, dones):
        self.iteration += 1

        # Delay adding to buffer to account for n_steps (particularly the reward)
        self.n_buffer.add(
            state=torch.tensor(states).reshape(self.num_workers,
                                               self.state_size).float(),
            next_state=torch.tensor(next_states).reshape(
                self.num_workers, self.state_size).float(),
            action=torch.tensor(actions).reshape(self.num_workers,
                                                 self.action_size).float(),
            reward=torch.tensor(rewards).reshape(self.num_workers, 1),
            done=torch.tensor(dones).reshape(self.num_workers, 1),
        )
        if not self.n_buffer.available:
            return

        samples = self.n_buffer.get().get_dict()
        for worker_idx in range(self.num_workers):
            self.buffer.add(
                state=samples['state'][worker_idx],
                next_state=samples['next_state'][worker_idx],
                action=samples['action'][worker_idx],
                done=samples['done'][worker_idx],
                reward=samples['reward'][worker_idx],
            )

        if self.iteration < self.warm_up:
            return

        if len(self.buffer) > self.batch_size and (self.iteration %
                                                   self.update_freq) == 0:
            self.learn(self.buffer.sample())

    def compute_value_loss(self,
                           states,
                           actions,
                           next_states,
                           rewards,
                           dones,
                           indices=None):
        # Q_w estimate
        value_dist_estimate = self.critic(states, actions)
        assert value_dist_estimate.shape == (self.batch_size, 1,
                                             self.num_atoms)
        value_dist = F.softmax(value_dist_estimate.squeeze(), dim=1)
        assert value_dist.shape == (self.batch_size, self.num_atoms)

        # Q_w' estimate via Bellman's dist operator
        next_action_seeds = self.target_actor.act(next_states)
        next_actions = self.policy(next_action_seeds).sample()
        assert next_actions.shape == (self.batch_size, self.action_size)

        target_value_dist_estimate = self.target_critic.act(
            states, next_actions)
        assert target_value_dist_estimate.shape == (self.batch_size, 1,
                                                    self.num_atoms)
        target_value_dist_estimate = target_value_dist_estimate.squeeze()
        assert target_value_dist_estimate.shape == (self.batch_size,
                                                    self.num_atoms)

        discount = self.gamma**self.n_steps
        target_value_projected = self.target_critic.dist_projection(
            rewards, 1 - dones, discount, target_value_dist_estimate)
        assert target_value_projected.shape == (self.batch_size,
                                                self.num_atoms)

        target_value_dist = F.softmax(target_value_dist_estimate,
                                      dim=-1).detach()
        assert target_value_dist.shape == (self.batch_size, self.num_atoms)

        # Comparing Q_w with Q_w'
        loss = self.value_loss_func(value_dist, target_value_projected)
        self._metric_batch_error = loss.detach().sum(dim=-1)
        samples_error = loss.sum(dim=-1).pow(2)
        loss_critic = samples_error.mean()

        if hasattr(self.buffer, 'priority_update') and indices is not None:
            assert (~torch.isnan(samples_error)).any()
            self.buffer.priority_update(indices,
                                        samples_error.detach().cpu().numpy())

        return loss_critic

    def compute_policy_loss(self, states):
        # Compute actor loss
        pred_action_seeds = self.actor(states)
        pred_actions = self.policy.act(pred_action_seeds)
        pred_actions = self.policy(pred_action_seeds).rsample()
        # Negative because the optimizer minimizes, but we want to maximize the value
        value_dist = self.critic(states, pred_actions)
        self._batch_value_dist_metric = value_dist.detach()
        # Estimate on Z support
        return -torch.mean(value_dist * self.critic.z_atoms)

    def learn(self, experiences):
        """Update critics and actors"""
        # No need for size assertion since .view() has explicit sizes
        rewards = to_tensor(experiences['reward']).view(
            self.batch_size, 1).float().to(self.device)
        dones = to_tensor(experiences['done']).view(self.batch_size, 1).type(
            torch.int).to(self.device)
        states = to_tensor(experiences['state']).view(
            self.batch_size, self.state_size).float().to(self.device)
        actions = to_tensor(experiences['action']).view(
            self.batch_size, self.action_size).to(self.device)
        next_states = to_tensor(experiences['next_state']).view(
            self.batch_size, self.state_size).float().to(self.device)

        indices = None
        if hasattr(self.buffer, 'priority_update'):  # When using PER buffer
            indices = experiences['index']

        # Value (critic) optimization
        loss_critic = self.compute_value_loss(states, actions, next_states,
                                              rewards, dones, indices)
        self.critic_optimizer.zero_grad()
        loss_critic.backward()
        nn.utils.clip_grad_norm_(self.actor_params, self.max_grad_norm_critic)
        self.critic_optimizer.step()
        self._loss_critic = float(loss_critic.item())

        # Policy (actor) optimization
        loss_actor = self.compute_policy_loss(states)
        self.actor_optimizer.zero_grad()
        loss_actor.backward()
        nn.utils.clip_grad_norm_(self.actor.parameters(),
                                 self.max_grad_norm_actor)
        self.actor_optimizer.step()
        self._loss_actor = float(loss_actor.item())

        # Networks gradual sync
        soft_update(self.target_actor, self.actor, self.tau)
        soft_update(self.target_critic, self.critic, self.tau)

    def state_dict(self) -> Dict[str, dict]:
        """Describes agent's networks.

        Returns:
            state: (dict) Provides actors and critics states.

        """
        return {
            "actor": self.actor.state_dict(),
            "target_actor": self.target_actor.state_dict(),
            "critic": self.critic.state_dict(),
            "target_critic": self.target_critic()
        }

    def log_metrics(self, data_logger: DataLogger, step, full_log=False):
        data_logger.log_value("loss/actor", self._loss_actor, step)
        data_logger.log_value("loss/critic", self._loss_critic, step)
        policy_params = {
            str(i): v
            for i, v in enumerate(
                itertools.chain.from_iterable(self.policy.parameters()))
        }
        data_logger.log_values_dict("policy/param", policy_params, step)

        data_logger.create_histogram('metric/batch_errors',
                                     self._metric_batch_error.sum(-1), step)
        data_logger.create_histogram('metric/batch_value_dist',
                                     self._batch_value_dist_metric, step)

        # This method, `log_metrics`, isn't executed on every iteration but just in case we delay plotting weights.
        # It simply might be quite costly. Thread wisely.
        if full_log:
            for idx, layer in enumerate(self.actor.layers):
                if hasattr(layer, "weight"):
                    data_logger.create_histogram(f"actor/layer_weights_{idx}",
                                                 layer.weight, step)
                if hasattr(layer, "bias") and layer.bias is not None:
                    data_logger.create_histogram(f"actor/layer_bias_{idx}",
                                                 layer.bias, step)

            for idx, layer in enumerate(self.critic.net.layers):
                if hasattr(layer, "weight"):
                    data_logger.create_histogram(f"critic/layer_{idx}",
                                                 layer.weight, step)
                if hasattr(layer, "bias") and layer.bias is not None:
                    data_logger.create_histogram(f"critic/layer_bias_{idx}",
                                                 layer.bias, step)

    def get_state(self):
        return dict(
            actor=self.actor.state_dict(),
            target_actor=self.target_actor.state_dict(),
            critic=self.critic.state_dict(),
            target_critic=self.target_critic.state_dict(),
            config=self._config,
        )

    def save_state(self, path: str):
        agent_state = self.get_state()
        torch.save(agent_state, path)

    def load_state(self, path: str):
        agent_state = torch.load(path)
        self._config = agent_state.get('config', {})
        self.__dict__.update(**self._config)

        self.actor.load_state_dict(agent_state['actor'])
        self.critic.load_state_dict(agent_state['critic'])
        self.target_actor.load_state_dict(agent_state['target_actor'])
        self.target_critic.load_state_dict(agent_state['target_critic'])