def test_vasp_hybrid_bands(
        configure_with_daemon,  # pylint: disable=unused-argument
        assert_finished,
        wait_for,
        get_insb_input  # pylint: disable=redefined-outer-name
):
    """
    Runs the VASP + hybrids reference bands workflow with InSb, on a very coarse grid.
    """
    from aiida.orm import Bool
    from aiida.plugins import DataFactory, load_node
    from aiida.engine import submit
    from aiida_tbextraction.fp_run.reference_bands import VaspReferenceBands

    KpointsData = orm.KpointsData
    kpoints_mesh = KpointsData()
    kpoints_mesh.set_kpoints_mesh([2, 2, 2])

    kpoints = KpointsData()
    kpoints.set_kpoints_path([('G', (0, 0, 0), 'M', (0.5, 0.5, 0.5))])

    pk = submit(VaspReferenceBands,
                merge_kpoints=Bool(True),
                kpoints=kpoints,
                kpoints_mesh=kpoints_mesh,
                **get_insb_input).pk
    wait_for(pk)
    assert_finished(pk)
    result = load_node(pk).get_outputs_dict()
    assert 'bands' in result
    assert (result['bands'].get_bands().shape == (len(kpoints.get_kpoints()),
                                                  36))
Example #2
0
    def create_unit_cell_expansions(self):

        print('start Gruneisen (pk={})'.format(self.pid))
        print('start create cell expansions')

        # For testing
        testing = False
        if testing:
            self.ctx._content['plus'] = load_node(13603)
            self.ctx._content['origin'] = load_node(13600)
            self.ctx._content['minus'] = load_node(13606)
            return

        calcs = {}
        for expansions in {
                'plus':
                float(self.inputs.pressure) +
                float(self.inputs.stress_displacement),
                'origin':
                float(self.inputs.pressure),
                'minus':
                float(self.inputs.pressure) -
                float(self.inputs.stress_displacement)
        }.items():

            future = submit(PhononPhonopy,
                            structure=self.inputs.structure,
                            ph_settings=self.inputs.ph_settings,
                            es_settings=self.inputs.es_settings,
                            pressure=Float(expansions[1]),
                            optimize=Bool(True),
                            use_nac=self.inputs.use_nac)

            calcs[expansions[0]] = future
            print('phonon workchain: {} {}'.format(expansions[0], future.pid))

        return ToContext(**calcs)
Example #3
0
    def optimize(self):
        print('start optimize')
        future = submit(
            OptimizeStructure,
            structure=self.inputs.structure,
            es_settings=self.inputs.es_settings,
            pressure=self.inputs.pressure,
        )
        if __testing__:
            self.ctx._content['optimize'] = load_node(9357)
            return

        print('optimize workchain: {}'.format(future.pid))

        return ToContext(optimized=future)
Example #4
0
def get_recover_calc(wc, label):

    if type(wc) is Bool:
        return None

    try:
        pk_list = wc.out.calcs_pk
    except:
        pk_list = []

    out_list = [load_node(pk) for pk in pk_list]

    for calc in wc.get_outputs() + out_list:
        if calc.label == label:
            if calc.get_state() == 'FINISHED':
                return calc

    return None
Example #5
0
    def harmonic_calculation(self):

        print('start thermal conductivity (pk={})'.format(self.pid))

        if __testing__:
            self.ctx._content['harmonic'] = load_node(83559)
            return

        self.report('Harmonic calculation')

        future = submit(PhononPhonopy,
                        structure=self.inputs.structure,
                        ph_settings=self.inputs.ph_settings,
                        es_settings=self.inputs.es_settings,
                        pressure=self.inputs.pressure,
                        optimize=self.inputs.optimize,
                        use_nac=self.inputs.use_nac)
        return ToContext(harmonic=future)
Example #6
0
    def create_grid_points(self):

        print('start phono3py distributed (pk={})'.format(self.pid))

        if 'nac' in self.inputs:
            nac_data = self.ctx.inputs.nac
        else:
            nac_data = None

        if __testing__:
            self.ctx._content['gp_0'] = load_node(85570)
            self.ctx._content['gp_1'] = load_node(85572)
            self.ctx._content['gp_2'] = load_node(85574)
            self.ctx._content['gp_3'] = load_node(85576)
            self.ctx._content['gp_4'] = load_node(85578)
            self.ctx._content['gp_5'] = load_node(85580)
            self.ctx.labels = [0, 1, 2, 3, 4, 5]
            return

        grid_points = get_grid_points(self.inputs.structure,
                                      self.inputs.parameters)

        def chunks(l, m):
            n = len(l) / m
            for i in range(0, len(l), n):
                yield l[i:i + n]

        calcs = {}
        self.ctx.labels = []
        for label, gp_range in enumerate(
                chunks(grid_points, int(self.inputs.gp_chunks))):
            JobCalculation, calculation_input = generate_phono3py_params(
                structure=self.inputs.structure,
                parameters=self.inputs.parameters,
                force_sets=self.inputs.force_sets,
                nac_data=nac_data,
                grid_point=gp_range)

            future = submit(JobCalculation, **calculation_input)
            print('gp_{} pk = {}'.format(label, future.pid))
            calcs['gp_{}'.format(label)] = future
            self.ctx.labels.append(label)

        return ToContext(**calcs)
Example #7
0
computer = Computer.objects.get(computer_name)
JobCalc = FleurinputgenCalculation.process()

attrs = {
    'max_wallclock_seconds': 180,
    'resources': {
        'num_machines': 1
    },
    'withmpi': False,
    #'computer': computer
}
inp = {'structure': s, 'parameters': parameters, 'code': code}

f = run(JobCalc, _options=attrs, **inp)
fleurinp = f['fleurinpData']
fleurinpd = load_node(fleurinp.pk)

# now run a Fleur calculation ontop of an inputgen calculation
code = Code.get_from_string(codename2)
JobCalc = FleurCalculation.process()

attrs = {'max_wallclock_seconds': 180, 'resources': {'num_machines': 1}}
inp1 = {'code': code, 'fleurinpdata': fleurinpd}  #'parent' : parent_calc,
f1 = run(JobCalc, _options=attrs, **inp1)
'''
# You can also run Fleur from a Fleur calculation and apply some changes to the input file.
#parent_id = JobCalc.pk
#parentcalc = FleurCalculation.get_subclass_from_pk(parent_id)
fleurinp = f1['fleurinpData']
fleurinpd = load_node(fleurinp.pk).copy()
fleurinpd.set_changes({'dos' : T})
Example #8
0
    def create_displacement_calculations(self):

        from aiida_phonopy.workflows.phonopy import get_primitive

        print('create displacements')
        self.report('create displacements')

        if 'optimized' in self.ctx:
            self.ctx.final_structure = self.ctx.optimized.out.optimized_structure
            self.out('optimized_data',
                     self.ctx.optimized.out.optimized_structure_data)
        else:
            self.ctx.final_structure = self.inputs.structure

        self.ctx.primitive_structure = get_primitive(
            self.ctx.final_structure,
            self.inputs.ph_settings)['primitive_structure']

        supercells = create_supercells_with_displacements_using_phono3py(
            self.ctx.final_structure, self.inputs.ph_settings,
            self.inputs.cutoff)

        self.ctx.data_sets = supercells.pop('data_sets')
        self.ctx.number_of_displacements = len(supercells)

        if __testing__:
            f = open('labels', 'r')
            lines = f.readlines()
            f.close()

            from aiida.orm import load_node
            nodes = [int(line.split()[3]) for line in lines]
            print(nodes)
            labels = [line.split()[0] for line in lines]
            print(labels)
            for pk, label in zip(nodes, labels):
                future = load_node(pk)
                self.ctx._content[label] = future
                print('{} pk = {}'.format(label, pk))

            return

        calcs = {}
        for label, supercell in supercells.iteritems():

            JobCalculation, calculation_input = generate_inputs(
                supercell,
                # self.inputs.machine,
                self.inputs.es_settings,
                # pressure=self.input.pressure,
                type='forces')

            calculation_input._label = label
            future = submit(JobCalculation, **calculation_input)
            print('{} pk = {}'.format(label, future.pid))
            # self.report('{} pk = {}'.format(label, future.pid))

            calcs[label] = future

        # Born charges (for primitive cell)
        if bool(self.inputs.use_nac):
            self.report('calculate born charges')
            JobCalculation, calculation_input = generate_inputs(
                self.ctx.primitive_structure,
                # self.inputs.machine,
                self.inputs.es_settings,
                # pressure=self.input.pressure,
                type='born_charges')
            future = submit(JobCalculation, **calculation_input)
            print('single_point: {}'.format(future.pid))
            calcs['single_point'] = future

        return ToContext(**calcs)
Example #9
0
            'num_machines': 1,
            'parallel_env': 'mpi*',
            'tot_num_mpiprocs': 16
        },
        'max_wallclock_seconds': 3600 * 10,
    }

    machine = Dict(dict=machine_dict)

    # PHONOPY settings
    ph_settings = Dict(
        dict={
            'supercell': [[2, 0, 0], [0, 2, 0], [0, 0, 2]],
            'primitive': [[0.0, 0.5, 0.5], [0.5, 0.0, 0.5], [0.5, 0.5, 0.0]],
            'distance': 0.01,
            'mesh': [20, 20, 20],
            'symmetry_tolerance': 1e-5,
            'code': 'phono3py@stern_in',
            'machine': machine_dict
        })

    # Chose how to run the calculation
    result = run(
        Phono3pyDist,
        structure=structure,
        parameters=ph_settings,
        force_sets=load_node(81481),  # load previous data
        gp_chunks=Int(8))

    print(result)