Example #1
0
def parseADCPdata(data, staInfo, ID):
    basetime = datetime(1970, 1, 1)
    # Find the number of bins
    nz = maxList(data['"bin (count)"'])
    nt = len(data['"bin (count)"']) / nz

    # Get the depth data
    ele = -np.array(data['"bin_distance (m)"\n'][0:nz])
    # Load in the data
    time = np.zeros(nt)
    u = np.zeros((nt, nz))
    v = np.zeros((nt, nz))
    T = np.zeros(nt)
    ii = 0
    for tt in range(0, nt):
        dt = data['date_time'][ii] - basetime
        time[tt] = dt.total_seconds() / 60.0
        T[tt] = data['"sea_water_temperature (C)"'][ii]
        for zz in range(0, nz):
            uu, vv = airsea.convertSpeedDirn(
                data['"direction_of_sea_water_velocity (degree)"'][ii],
                data['"sea_water_speed (cm/s)"'][ii] / 100)
            u[tt, zz] = uu
            v[tt, zz] = vv
            ii += 1
    # Insert each variable into a list
    ncdict = []
    # U
    coords = [{'Name':'longitude','Value':staInfo[ID]['lon'],'units':'degrees East'},\
                {'Name':'latitude','Value':staInfo[ID]['lat'],'units':'degrees North'},\
                {'Name':'elevation','Value':ele,'units':'metres','positive':'up'},\
                {'Name':'time','Value':time,'units':'minutes since 1970-01-01 00:00:00'}]

    attribs = {'StationID':ID,'StationName':staInfo[ID]['name'],'Data':u,\
    'coordinates':'time, elevation, latitude, longitude','long_name':'Eastward Water Velocity Component',\
    'units':'m/s','coords':coords}
    ncdict.append({'water_u': attribs})
    # V
    coords = [{'Name':'longitude','Value':staInfo[ID]['lon'],'units':'degrees East'},\
                {'Name':'latitude','Value':staInfo[ID]['lat'],'units':'degrees North'},\
                {'Name':'elevation','Value':ele,'units':'metres','positive':'up'},\
                {'Name':'time','Value':time,'units':'minutes since 1970-01-01 00:00:00'}]

    attribs = {'StationID':ID,'StationName':staInfo[ID]['name'],'Data':v,\
    'coordinates':'time, elevation, latitude, longitude','long_name':'Northward Water Velocity Component',\
    'units':'m/s','coords':coords}
    ncdict.append({'water_v': attribs})
    # T
    coords = [{'Name':'longitude','Value':staInfo[ID]['lon'],'units':'degrees East'},\
                {'Name':'latitude','Value':staInfo[ID]['lat'],'units':'degrees North'},\
                {'Name':'elevation','Value':ele[0],'units':'metres','positive':'up'},\
                {'Name':'time','Value':time,'units':'minutes since 1970-01-01 00:00:00'}]

    attribs = {'StationID':ID,'StationName':staInfo[ID]['name'],'Data':T,\
    'coordinates':'time, elevation, latitude, longitude','long_name':'Sea Water Temperature',\
    'units':'degrees C','coords':coords}
    ncdict.append({'watertemp': attribs})

    return ncdict
Example #2
0
def parseADCPdata(data,staInfo,ID):
    basetime = datetime(1970,1,1)
    # Find the number of bins
    nz = maxList(data['"bin (count)"'])
    nt = len(data['"bin (count)"'])/nz
        
    # Get the depth data
    ele = -np.array(data['"bin_distance (m)"\n'][0:nz])
    # Load in the data
    time = np.zeros(nt)
    u = np.zeros((nt,nz))
    v = np.zeros((nt,nz))
    T = np.zeros(nt)
    ii=0
    for tt in range(0,nt):
        dt = data['date_time'][ii]-basetime
        time[tt] = dt.total_seconds()/60.0
        T[tt]=data['"sea_water_temperature (C)"'][ii]
        for zz in range(0,nz):
            uu,vv=airsea.convertSpeedDirn(data['"direction_of_sea_water_velocity (degree)"'][ii],data['"sea_water_speed (cm/s)"'][ii]/100)
            u[tt,zz]=uu
            v[tt,zz]=vv
            ii+=1
    # Insert each variable into a list
    ncdict = []
    # U
    coords = [{'Name':'longitude','Value':staInfo[ID]['lon'],'units':'degrees East'},\
                {'Name':'latitude','Value':staInfo[ID]['lat'],'units':'degrees North'},\
                {'Name':'elevation','Value':ele,'units':'metres','positive':'up'},\
                {'Name':'time','Value':time,'units':'minutes since 1970-01-01 00:00:00'}]
                
    attribs = {'StationID':ID,'StationName':staInfo[ID]['name'],'Data':u,\
    'coordinates':'time, elevation, latitude, longitude','long_name':'Eastward Water Velocity Component',\
    'units':'m/s','coords':coords} 
    ncdict.append({'water_u':attribs})
    # V
    coords = [{'Name':'longitude','Value':staInfo[ID]['lon'],'units':'degrees East'},\
                {'Name':'latitude','Value':staInfo[ID]['lat'],'units':'degrees North'},\
                {'Name':'elevation','Value':ele,'units':'metres','positive':'up'},\
                {'Name':'time','Value':time,'units':'minutes since 1970-01-01 00:00:00'}]
                
    attribs = {'StationID':ID,'StationName':staInfo[ID]['name'],'Data':v,\
    'coordinates':'time, elevation, latitude, longitude','long_name':'Northward Water Velocity Component',\
    'units':'m/s','coords':coords} 
    ncdict.append({'water_v':attribs})
    # T
    coords = [{'Name':'longitude','Value':staInfo[ID]['lon'],'units':'degrees East'},\
                {'Name':'latitude','Value':staInfo[ID]['lat'],'units':'degrees North'},\
                {'Name':'elevation','Value':ele[0],'units':'metres','positive':'up'},\
                {'Name':'time','Value':time,'units':'minutes since 1970-01-01 00:00:00'}]
                
    attribs = {'StationID':ID,'StationName':staInfo[ID]['name'],'Data':T,\
    'coordinates':'time, elevation, latitude, longitude','long_name':'Sea Water Temperature',\
    'units':'degrees C','coords':coords} 
    ncdict.append({'watertemp':attribs})
    
    return ncdict
Example #3
0
def ishData2struct(gzfile, station_id, station_name):
    """ 
    Convert the data into a useful structure array (dictionary)
    """
    ### Input Variables
    #gzfile = './rawdata/722420-12923-2012.gz'
    #station_id = '722420-12923'
    #station_name = 'test'
    ###

    print 'Reading ISH gz file: %s...' % gzfile

    ishdata = readRawGZdata(gzfile)

    # Create the base structure (dictionary)
    station = {}
    station['StationName'] = station_name
    station['StationID'] = station_id
    station['Latitude'] = []
    station['Longitude'] = []
    station['Tair'] = {
        'Data': [],
        'Time': [],
        'Units': 'Celsius',
        'Longname': 'Air Temperature',
        'Height': [],
        'TimeUnits': 'minutes since 1970-01-01 00:00:00'
    }
    station['Pair'] = {
        'Data': [],
        'Time': [],
        'Units': 'hPa',
        'Longname': 'Air Pressure',
        'Height': [],
        'TimeUnits': 'minutes since 1970-01-01 00:00:00'
    }
    station['Uwind'] = {
        'Data': [],
        'Time': [],
        'Units': 'm s-1',
        'Longname': 'Eastward wind velocity component',
        'Height': [],
        'TimeUnits': 'minutes since 1970-01-01 00:00:00'
    }
    station['Vwind'] = {
        'Data': [],
        'Time': [],
        'Units': 'm s-1',
        'Longname': 'Northward wind velocity component',
        'Height': [],
        'TimeUnits': 'minutes since 1970-01-01 00:00:00'
    }
    station['RH'] = {
        'Data': [],
        'Time': [],
        'Units': 'percent',
        'Longname': 'Relative Humidity',
        'Height': [],
        'TimeUnits': 'minutes since 1970-01-01 00:00:00'
    }
    station['cloud'] = {
        'Data': [],
        'Time': [],
        'Units': 'dimensionless',
        'Longname': 'Cloud cover fraction',
        'TimeUnits': 'minutes since 1970-01-01 00:00:00'
    }
    station['rain'] = {
        'Data': [],
        'Time': [],
        'Units': 'kg m2 s-1',
        'Longname': 'rain fall rate',
        'TimeUnits': 'minutes since 1970-01-01 00:00:00'
    }

    # Loop through the ishdata
    ii = 0
    basetime = datetime(1970, 1, 1)
    for dd in ishdata:
        if ii == 0:
            station['Latitude'] = dd['lat']
            station['Longitude'] = dd['lon']
        # Convert the time to a suitable time format
        t = datetime.strptime(dd['yyyymmdd'] + dd['hhmm'], '%Y%m%d%H%M')
        dt = t - basetime
        tobs = dt.total_seconds() / 60.0
        #       tobs = (t.toordinal()-basetime.toordinal())*1440.0

        # Check for missing values here

        # Append the required data fields
        station['Tair']['Data'].append(dd['airtemp'])
        station['Tair']['Time'].append(tobs)
        if ii == 0:
            station['Tair']['Height'] = dd['ele']

        station['Pair']['Data'].append(dd['airpres'])
        station['Pair']['Time'].append(tobs)
        if ii == 0:
            station['Pair']['Height'] = dd['ele']

        if np.size(dd['windspd']) == np.size(dd['winddir']):
            spd = dd['windspd']
            if spd >= 999: spd = np.NaN
            dirn = dd['winddir']
            if dirn >= 999: dirn = np.NaN
            # Note the flip of direction to go to cartesian vectors
            theta = np.mod(dirn - 180, 360)
            [Uwind, Vwind] = airsea.convertSpeedDirn(theta, spd)
            station['Uwind']['Data'].append(Uwind)
            station['Uwind']['Time'].append(tobs)
            if ii == 0:
                station['Uwind']['Height'] = dd['ele']

            station['Vwind']['Data'].append(Vwind)
            station['Vwind']['Time'].append(tobs)
            if ii == 0:
                station['Vwind']['Height'] = dd['ele']

        rh = returnHumidity(dd)
        if np.size(rh) > 0:
            station['RH']['Data'].append(rh)
            station['RH']['Time'].append(tobs)
        if ii == 0:
            station['RH']['Height'] = dd['ele']

        rain = returnRainfall(dd)
        if np.size(rain) > 0:
            station['rain']['Data'].append(rain)
            station['rain']['Time'].append(tobs)

        cloud = returnCloudCover(dd)
        if np.size(cloud) > 0:
            station['cloud']['Data'].append(cloud)
            station['cloud']['Time'].append(tobs)

    # Print a summary
    print 'File Summary:'
    print 'No. of Tair observations - %d' % len(station['Tair']['Data'])
    print 'No. of Pair observations - %d' % len(station['Pair']['Data'])
    print 'No. of Uwind observations - %d' % len(station['Uwind']['Data'])
    print 'No. of Vwind observations - %d' % len(station['Vwind']['Data'])
    print 'No. of RH observations - %d' % len(station['RH']['Data'])
    print 'No. of rain observations - %d' % len(station['rain']['Data'])
    print 'No. of cloud observations - %d' % len(station['cloud']['Data'])
    print '############# File read successfully################\n'

    return station
def ishData2struct(gzfile,station_id,station_name):
    """ 
    Convert the data into a useful structure array (dictionary)
    """      
    ### Input Variables
    #gzfile = './rawdata/722420-12923-2012.gz'
    #station_id = '722420-12923'
    #station_name = 'test'
    ###
    
    print 'Reading ISH gz file: %s...' % gzfile
       
    ishdata = readRawGZdata(gzfile)
    
    # Create the base structure (dictionary)
    station={}
    station['StationName']=station_name
    station['StationID']=station_id
    station['Latitude']=[]
    station['Longitude']=[]
    station['Tair'] = {'Data':[],'Time':[],'Units':'Celsius','Longname':'Air Temperature','Height':[],'TimeUnits':'minutes since 1970-01-01 00:00:00'}
    station['Pair'] = {'Data':[],'Time':[],'Units':'hPa','Longname':'Air Pressure','Height':[],'TimeUnits':'minutes since 1970-01-01 00:00:00'}
    station['Uwind'] = {'Data':[],'Time':[],'Units':'m s-1','Longname':'Eastward wind velocity component','Height':[],'TimeUnits':'minutes since 1970-01-01 00:00:00'}
    station['Vwind'] = {'Data':[],'Time':[],'Units':'m s-1','Longname':'Northward wind velocity component','Height':[],'TimeUnits':'minutes since 1970-01-01 00:00:00'}
    station['RH'] = {'Data':[],'Time':[],'Units':'percent','Longname':'Relative Humidity','Height':[],'TimeUnits':'minutes since 1970-01-01 00:00:00'}
    station['cloud'] = {'Data':[],'Time':[],'Units':'dimensionless','Longname':'Cloud cover fraction','TimeUnits':'minutes since 1970-01-01 00:00:00'}
    station['rain'] = {'Data':[],'Time':[],'Units':'kg m2 s-1','Longname':'rain fall rate','TimeUnits':'minutes since 1970-01-01 00:00:00'}
    
    # Loop through the ishdata
    ii=0
    basetime = datetime(1970,1,1)
    for dd in ishdata:
        if ii == 0:
            station['Latitude'] = dd['lat']
            station['Longitude'] = dd['lon']
        # Convert the time to a suitable time format
        t = datetime.strptime(dd['yyyymmdd']+dd['hhmm'],'%Y%m%d%H%M')
        dt = t-basetime
        tobs = dt.total_seconds()/60.0
        #       tobs = (t.toordinal()-basetime.toordinal())*1440.0
        
        # Check for missing values here
        
        # Append the required data fields
        station['Tair']['Data'].append(dd['airtemp'])
        station['Tair']['Time'].append(tobs)
        if ii == 0:
            station['Tair']['Height'] = dd['ele']
            
        station['Pair']['Data'].append(dd['airpres'])
        station['Pair']['Time'].append(tobs)
        if ii == 0:
            station['Pair']['Height'] = dd['ele']
        
        if np.size(dd['windspd']) == np.size(dd['winddir']):
            spd=dd['windspd']
            if spd >= 999: spd=np.NaN
            dirn=dd['winddir']
            if dirn >= 999: dirn=np.NaN
            # Note the flip of direction to go to cartesian vectors
            theta = np.mod(dirn-180,360)
            [Uwind,Vwind] = airsea.convertSpeedDirn(theta,spd)
            station['Uwind']['Data'].append(Uwind)
            station['Uwind']['Time'].append(tobs)
            if ii == 0:
                station['Uwind']['Height'] = dd['ele']
            
            station['Vwind']['Data'].append(Vwind)
            station['Vwind']['Time'].append(tobs)
            if ii == 0:
                station['Vwind']['Height'] = dd['ele']
            
        rh = returnHumidity(dd)     
        if np.size(rh) > 0:
           station['RH']['Data'].append(rh)
           station['RH']['Time'].append(tobs)
        if ii == 0:
            station['RH']['Height'] = dd['ele']
           
        rain = returnRainfall(dd)
        if np.size(rain) > 0:
           station['rain']['Data'].append(rain)
           station['rain']['Time'].append(tobs)
               
        cloud = returnCloudCover(dd)
        if np.size(cloud) > 0:
            station['cloud']['Data'].append(cloud)
            station['cloud']['Time'].append(tobs)
        
    # Print a summary
    print 'File Summary:'
    print   'No. of Tair observations - %d' % len(station['Tair']['Data'])       
    print   'No. of Pair observations - %d' % len(station['Pair']['Data']) 
    print   'No. of Uwind observations - %d' % len(station['Uwind']['Data']) 
    print   'No. of Vwind observations - %d' % len(station['Vwind']['Data']) 
    print   'No. of RH observations - %d' % len(station['RH']['Data']) 
    print   'No. of rain observations - %d' % len(station['rain']['Data']) 
    print   'No. of cloud observations - %d' % len(station['cloud']['Data']) 
    print '############# File read successfully################\n'
        
    return station