def fused_relu_grad_bn_double_update_grad(data_1, data_2, data_3, data_4, data_5, data_6, data_7, layout='NHWC'):
    transform_list = [data_2, data_4, data_5, data_6, data_7]
    for i in transform_list:
        if layout == "NCHW":
            i = topi.transpose(i, axes=(0, 2, 3, 1))
        elif layout != "NHWC":
            raise NotImplementedError( 'Layout not supported {} '.format(layout))

    data_tmp1 = topi.full_like(data_7, 0.0)
    data_tmp2 = topi.greater(data_7, data_tmp1)
    data_tmp3 = topi.add(data_5, data_6)
    data_tmp4 = topi.where(data_tmp2, data_tmp3, data_tmp1)
    data_tmp5 = topi.cast(data_tmp4, 'float32')
    data_tmp7 = topi.sum(data_tmp5, axis=(0, 1, 2))

    n, h, w, c = data_7.shape
    data_tmp8 = topi.cast(data_2, 'float32')
    data_tmp9 = topi.full_like(data_tmp7, 1.0/(n*h*w))
    data_tmp10 = topi.multiply(data_1, data_tmp9)
    data_tmp11 = topi.broadcast_to(data_tmp10, data_tmp8.shape)
    data_tmp12 = topi.subtract(data_tmp8, data_tmp11)
    data_tmp13 = topi.multiply(data_tmp5, data_tmp12)
    data_tmp15 = topi.sum(data_tmp13, axis=(0, 1, 2))

    data_tmp16 = topi.cast(data_4, 'float32')
    data_tmp17 = topi.multiply(data_3, data_tmp9)
    data_tmp18 = topi.broadcast_to(data_tmp17, data_tmp16.shape)
    data_tmp19 = topi.subtract(data_tmp16, data_tmp18)
    data_tmp20 = topi.multiply(data_tmp5, data_tmp19)
    data_tmp22 = topi.sum(data_tmp20, axis=(0, 1, 2))

    return [data_tmp7, data_tmp15, data_tmp22]
Example #2
0
def fused_relu_grad_bn_reduce_grad(data_1,
                                   data_2,
                                   data_3,
                                   data_4,
                                   data_5,
                                   data_6,
                                   data_7,
                                   data_8,
                                   data_9,
                                   layout='NHWC',
                                   target=utils.CUDA):
    """
    fused_relu_grad_bn_reduce_grad.

    Args:
        data_1~data_9: tvm.tensor.Tensor.
        layout: input layout, only 'NCHW', 'NHWC' supported

    Returns:
        tvm.tensor.Tensor.
    """
    transform_list = [data_7, data_8, data_9]
    for i in transform_list:
        if layout == "NCHW":
            i = topi.transpose(i, axes=(0, 2, 3, 1))
        elif layout != "NHWC":
            raise NotImplementedError(
                'Layout not supported {} '.format(layout))

    data_tmp1 = topi.multiply(data_4, data_5)
    n, h, w, c = data_9.shape
    data_tmp2 = topi.full_like(data_tmp1, 1.0 / (n * h * w))
    data_tmp3 = topi.multiply(data_tmp1, data_tmp2)

    data_tmp5 = topi.full_like(data_9, 0.0)
    data_tmp6 = topi.greater(data_9, data_tmp5)

    data_tmp7 = topi.where(data_tmp6, data_8, data_tmp5)

    data_tmp8 = topi.cast(data_tmp7, 'float32')
    data_tmp9 = topi.full_like(data_tmp8, n * h * w)
    data_tmp10 = topi.multiply(data_tmp8, data_tmp9)
    data_tmp12 = topi.subtract(data_tmp10, data_3)
    data_tmp14 = topi.cast(data_7, 'float32')
    data_tmp15 = topi.multiply(data_6, data_tmp2)

    data_tmp17 = topi.subtract(data_tmp14, data_tmp15)
    data_tmp18 = topi.multiply(data_2, data_tmp17)
    data_tmp20 = topi.divide(data_tmp18, data_1)
    data_tmp21 = topi.subtract(data_tmp12, data_tmp20)
    data_tmp22 = topi.multiply(data_tmp3, data_tmp21)
    data_out = topi.cast(data_tmp22, 'float16')

    return data_out
Example #3
0
def select_compute(condition, x1, x2):
    """select compute implementation"""
    shape = get_shape(x1)
    con_shape = get_shape(condition)
    num_dtype = x1.dtype
    bool_dtype = condition.dtype

    if num_dtype in ("int8", "uint8"):
        x1_dtype = "float32"
        ones = akg.lang.cce.broadcast(tvm.const(VALUE_ONE, dtype="float32"),
                                      shape,
                                      output_dtype="float32")
        x1 = akg.lang.cce.cast_to(x1, "float32")
        x2 = akg.lang.cce.cast_to(x2, "float32")
    else:
        x1_dtype = num_dtype
        ones = akg.lang.cce.broadcast(tvm.const(VALUE_ONE, dtype=num_dtype),
                                      shape,
                                      output_dtype=num_dtype)

    if bool_dtype == "int8":
        if x1_dtype == "int32":
            condition_dtype = akg.lang.cce.ceil(condition)
        else:
            condition_dtype = akg.lang.cce.cast_to(condition, x1_dtype)
    else:
        if x1_dtype == "int32":
            condition_dtype = condition
        else:
            condition_dtype = akg.lang.cce.cast_to(condition, x1_dtype)

    if list(con_shape) != list(shape):
        condition_dtype = akg.lang.cce.broadcast(condition_dtype, shape)

    vinsn_support_dtype = ("float16", "float32")
    if utils.product_is_mini():
        vinsn_support_dtype = ("float16", )
    if num_dtype in vinsn_support_dtype:
        res = topi.where(condition_dtype, x1, x2)
    else:
        # For data types that are not supported by the vector instruction (vcmp and vsel),
        # if the `topi.where` is directly used, the related instructions generated in the .cce file
        # are scalar instructions such as `cond ? x1 : x2`, which is very inefficient.
        # Therefore, other equivalent calculation methods are adopted.
        condition_opp = akg.lang.cce.vsub(ones, condition_dtype)
        temp_x = akg.lang.cce.vmul(x1, condition_dtype)
        temp_y = akg.lang.cce.vmul(x2, condition_opp)
        res = akg.lang.cce.vadd(temp_x, temp_y)
    if num_dtype in ("int8", "uint8"):
        res = akg.lang.cce.cast_to(res, num_dtype)
    return res
Example #4
0
def fused_relu_grad(input1, input2, input3, c1, target=utils.CUDA):
    """
    fused_relu_grad.

    Args:
        input1 ~ input3: tvm.tensor.Tensor.
        c1: const.

    Returns:
        Three output (list of tvm.tensor.Tensor).
    """
    data_zero = topi.full_like(input3, c1)
    cmp_zero = topi.greater(input3, data_zero)
    data_add = topi.add(input1, input2)

    return topi.where(cmp_zero, data_add, data_zero)