Example #1
0
def get_test_example():
    processor = processors[task_name]()
    label_list = processor.get_labels()
    tokenizer = tokenization.FullTokenizer(vocab_file=vocab_file,
                                           spm_model_file=spm_model_file)
    # save data to tf_record
    #test_examples = processor.get_test_examples("")#测试数据目录
    test_examples = processor.get_test_examples(data_dir)
    features = get_test_features(test_examples, label_list, max_seq_length,
                                 tokenizer)

    return features
Example #2
0
def create_tokenizer_from_hub_module(albert_hub_module_handle):
    """Get the vocab file and casing info from the Hub module."""
    with tf.Graph().as_default():
        albert_module = hub.Module(albert_hub_module_handle)
        tokenization_info = albert_module(signature="tokenization_info",
                                          as_dict=True)
        with tf.Session() as sess:
            vocab_file, do_lower_case = sess.run([
                tokenization_info["vocab_file"],
                tokenization_info["do_lower_case"]
            ])
    return tokenization.FullTokenizer(vocab_file=vocab_file,
                                      do_lower_case=do_lower_case,
                                      spm_model_file=FLAGS.spm_model_file)
Example #3
0
def transformer(path, s3_path, class_name, model='xlnet', **kwargs):
    check_file(path[model], s3_path[model], **kwargs)
    g = load_graph(path[model]['model'], **kwargs)

    try:
        with open(path[model]['setting']) as fopen:
            nodes = json.load(fopen)
    except:
        raise Exception(
            f"model corrupted due to some reasons, please run malaya.clear_cache('{class_name}/{model}/{size}') and try again"
        )

    if model in ['albert', 'bert', 'tiny-albert', 'tiny-bert']:
        if model in ['bert', 'tiny-bert']:
            tokenizer = sentencepiece_tokenizer_bert(path[model]['tokenizer'],
                                                     path[model]['vocab'])

        if model in ['albert', 'tiny-albert']:
            from albert import tokenization

            tokenizer = tokenization.FullTokenizer(
                vocab_file=path[model]['vocab'],
                do_lower_case=False,
                spm_model_file=path[model]['tokenizer'],
            )

        return TAGGING_BERT(
            X=g.get_tensor_by_name('import/Placeholder:0'),
            segment_ids=None,
            input_masks=g.get_tensor_by_name('import/Placeholder_1:0'),
            logits=g.get_tensor_by_name('import/logits:0'),
            sess=generate_session(graph=g, **kwargs),
            tokenizer=tokenizer,
            settings=nodes,
        )

    if model in ['xlnet', 'alxlnet']:
        tokenizer = sentencepiece_tokenizer_xlnet(path[model]['tokenizer'])
        return TAGGING_XLNET(
            X=g.get_tensor_by_name('import/Placeholder:0'),
            segment_ids=g.get_tensor_by_name('import/Placeholder_1:0'),
            input_masks=g.get_tensor_by_name('import/Placeholder_2:0'),
            logits=g.get_tensor_by_name('import/logits:0'),
            sess=generate_session(graph=g, **kwargs),
            tokenizer=tokenizer,
            settings=nodes,
        )
Example #4
0
def load(model: str = 'albert', **kwargs):
    """
    Load albert model.

    Parameters
    ----------
    model : str, optional (default='base')
        Model architecture supported. Allowed values:

        * ``'albert'`` - base albert-bahasa released by Malaya.
        * ``'albert-tiny'`` - tiny bert-bahasa released by Malaya.

    Returns
    -------
    result : malaya.transformers.albert.Model class
    """

    from malaya.path import PATH_ALBERT, S3_PATH_ALBERT
    from malaya.function import check_file

    model = model.lower()
    check_file(PATH_ALBERT[model]['model'], S3_PATH_ALBERT[model], **kwargs)

    if not os.path.exists(PATH_ALBERT[model]['directory'] + 'model.ckpt'):
        import tarfile

        with tarfile.open(PATH_ALBERT[model]['model']['model']) as tar:
            tar.extractall(path=PATH_ALBERT[model]['path'])

    from albert import tokenization

    bert_checkpoint = PATH_ALBERT[model]['directory'] + 'model.ckpt'
    vocab_model = PATH_ALBERT[model]['directory'] + 'sp10m.cased.v10.model'
    vocab = PATH_ALBERT[model]['directory'] + 'sp10m.cased.v10.vocab'
    bert_config = PATH_ALBERT[model]['directory'] + 'config.json'

    tokenizer = tokenization.FullTokenizer(vocab_file=vocab,
                                           do_lower_case=False,
                                           spm_model_file=vocab_model)

    bert_config = modeling.AlbertConfig.from_json_file(bert_config)
    model = Model(bert_config, tokenizer)
    model._saver.restore(model._sess, bert_checkpoint)
    return model
Example #5
0
def main(_):
    tf.logging.set_verbosity(tf.logging.INFO)

    tokenizer = tokenization.FullTokenizer(
        vocab_file=FLAGS.vocab_file,
        do_lower_case=FLAGS.do_lower_case,
        spm_model_file=FLAGS.spm_model_file,
    )

    input_files = []
    for input_pattern in FLAGS.input_file.split(","):
        input_files.extend(tf.gfile.Glob(input_pattern))

    tf.logging.info("*** Reading from input files ***")
    for input_file in input_files:
        tf.logging.info("  %s", input_file)

    rng = random.Random(FLAGS.random_seed)
    instances = create_training_instances(
        input_files,
        tokenizer,
        FLAGS.max_seq_length,
        FLAGS.dupe_factor,
        FLAGS.short_seq_prob,
        FLAGS.masked_lm_prob,
        FLAGS.max_predictions_per_seq,
        rng,
    )

    tf.logging.info("number of instances: %i", len(instances))

    output_files = FLAGS.output_file.split(",")
    tf.logging.info("*** Writing to output files ***")
    for output_file in output_files:
        tf.logging.info("  %s", output_file)

    write_instance_to_example_files(
        instances,
        tokenizer,
        FLAGS.max_seq_length,
        FLAGS.max_predictions_per_seq,
        output_files,
    )
Example #6
0
    def sentence_to_idx(self, text):
        """
        将分词后的句子转换成idx表示
        :return:
        """
        tokenizer = tokenization.FullTokenizer(vocab_file=self.vocab_path,
                                               do_lower_case=True)

        text = tokenization.convert_to_unicode(text)
        tokens = tokenizer.tokenize(text)
        tokens = ["[CLS]"] + tokens + ["[SEP]"]
        input_id = tokenizer.convert_tokens_to_ids(tokens)
        input_mask = [1] * len(input_id)
        segment_id = [0] * len(input_id)

        input_id, input_mask, segment_id = self.padding(
            input_id, input_mask, segment_id)

        return [input_id], [input_mask], [segment_id]
Example #7
0
    def trans_to_index(self, inputs):
        """
        将输入转化为索引表示
        :param inputs: 输入
        :return:
        """
        tokenizer = tokenization.FullTokenizer(vocab_file=self.__vocab_path,
                                               do_lower_case=True)
        input_ids = []
        input_masks = []
        segment_ids = []
        for text in inputs:
            text = tokenization.convert_to_unicode(text)
            tokens = tokenizer.tokenize(text)
            tokens = ["[CLS]"] + tokens + ["[SEP]"]
            input_id = tokenizer.convert_tokens_to_ids(tokens)
            input_ids.append(input_id)
            input_masks.append([1] * len(input_id))
            segment_ids.append([0] * len(input_id))

        return input_ids, input_masks, segment_ids
Example #8
0
  def test_full_tokenizer(self):
    vocab_tokens = [
        "[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn",
        "##ing", ","
    ]
    with tempfile.NamedTemporaryFile(delete=False) as vocab_writer:
      if six.PY2:
        vocab_writer.write("".join([x + "\n" for x in vocab_tokens]))
      else:
        contents = "".join([six.ensure_str(x) + "\n" for x in vocab_tokens])
        vocab_writer.write(six.ensure_binary(contents, "utf-8"))

      vocab_file = vocab_writer.name

    tokenizer = tokenization.FullTokenizer(vocab_file)
    os.unlink(vocab_file)

    tokens = tokenizer.tokenize(u"UNwant\u00E9d,running")
    self.assertAllEqual(tokens, ["un", "##want", "##ed", ",", "runn", "##ing"])

    self.assertAllEqual(
        tokenizer.convert_tokens_to_ids(tokens), [7, 4, 5, 10, 8, 9])
Example #9
0
def make_tf_record(output_dir, data_dir, vocab_file, spm_model_file):
    tf.gfile.MakeDirs(output_dir)  #"model/bert"
    processor = processors[task_name]()  #"atec"
    label_list = processor.get_labels()
    tokenizer = tokenization.FullTokenizer(vocab_file=vocab_file,
                                           spm_model_file=spm_model_file)
    train_file = os.path.join(output_dir, "train.tf_record")
    eval_file = os.path.join(output_dir, "eval.tf_record")

    # save data to tf_record
    if not os.path.isfile(train_file):
        train_examples = processor.get_train_examples(data_dir)
        file_based_convert_examples_to_features(train_examples, label_list,
                                                max_seq_length, tokenizer,
                                                train_file, task_name)
        del train_examples
    # eval data
    if not os.path.isfile(eval_file):
        eval_examples = processor.get_dev_examples(data_dir)
        file_based_convert_examples_to_features(eval_examples, label_list,
                                                max_seq_length, tokenizer,
                                                eval_file, task_name)
        del eval_examples
Example #10
0
def main(_):
  tf.logging.set_verbosity(tf.logging.INFO)

  albert_config = modeling.AlbertConfig.from_json_file(FLAGS.albert_config_file)

  validate_flags_or_throw(albert_config)

  tf.gfile.MakeDirs(FLAGS.output_dir)

  tokenizer = tokenization.FullTokenizer(
      vocab_file=FLAGS.vocab_file, do_lower_case=FLAGS.do_lower_case,
      spm_model_file=FLAGS.spm_model_file)

  tpu_cluster_resolver = None
  if FLAGS.use_tpu and FLAGS.tpu_name:
    tpu_cluster_resolver = contrib_cluster_resolver.TPUClusterResolver(
        FLAGS.tpu_name, zone=FLAGS.tpu_zone, project=FLAGS.gcp_project)

  is_per_host = contrib_tpu.InputPipelineConfig.PER_HOST_V2
  if FLAGS.do_train:
    iterations_per_loop = int(min(FLAGS.iterations_per_loop,
                                  FLAGS.save_checkpoints_steps))
  else:
    iterations_per_loop = FLAGS.iterations_per_loop
  run_config = contrib_tpu.RunConfig(
      cluster=tpu_cluster_resolver,
      master=FLAGS.master,
      model_dir=FLAGS.output_dir,
      save_checkpoints_steps=FLAGS.save_checkpoints_steps,
      tpu_config=contrib_tpu.TPUConfig(
          iterations_per_loop=iterations_per_loop,
          num_shards=FLAGS.num_tpu_cores,
          per_host_input_for_training=is_per_host))

  train_examples = None
  num_train_steps = None
  num_warmup_steps = None
  train_examples = squad_utils.read_squad_examples(
      input_file=FLAGS.train_file, is_training=True)
  num_train_steps = int(
      len(train_examples) / FLAGS.train_batch_size * FLAGS.num_train_epochs)
  if FLAGS.do_train:
    num_warmup_steps = int(num_train_steps * FLAGS.warmup_proportion)

    # Pre-shuffle the input to avoid having to make a very large shuffle
    # buffer in in the `input_fn`.
    rng = random.Random(12345)
    rng.shuffle(train_examples)

  model_fn = squad_utils.v1_model_fn_builder(
      albert_config=albert_config,
      init_checkpoint=FLAGS.init_checkpoint,
      learning_rate=FLAGS.learning_rate,
      num_train_steps=num_train_steps,
      num_warmup_steps=num_warmup_steps,
      use_tpu=FLAGS.use_tpu,
      use_one_hot_embeddings=FLAGS.use_tpu)

  # If TPU is not available, this will fall back to normal Estimator on CPU
  # or GPU.
  estimator = contrib_tpu.TPUEstimator(
      use_tpu=FLAGS.use_tpu,
      model_fn=model_fn,
      config=run_config,
      train_batch_size=FLAGS.train_batch_size,
      predict_batch_size=FLAGS.predict_batch_size)

  if FLAGS.do_train:
    # We write to a temporary file to avoid storing very large constant tensors
    # in memory.

    if not tf.gfile.Exists(FLAGS.train_feature_file):
      train_writer = squad_utils.FeatureWriter(
          filename=os.path.join(FLAGS.train_feature_file), is_training=True)
      squad_utils.convert_examples_to_features(
          examples=train_examples,
          tokenizer=tokenizer,
          max_seq_length=FLAGS.max_seq_length,
          doc_stride=FLAGS.doc_stride,
          max_query_length=FLAGS.max_query_length,
          is_training=True,
          output_fn=train_writer.process_feature,
          do_lower_case=FLAGS.do_lower_case)
      train_writer.close()

    tf.logging.info("***** Running training *****")
    tf.logging.info("  Num orig examples = %d", len(train_examples))
    # tf.logging.info("  Num split examples = %d", train_writer.num_features)
    tf.logging.info("  Batch size = %d", FLAGS.train_batch_size)
    tf.logging.info("  Num steps = %d", num_train_steps)
    del train_examples

    train_input_fn = squad_utils.input_fn_builder(
        input_file=FLAGS.train_feature_file,
        seq_length=FLAGS.max_seq_length,
        is_training=True,
        drop_remainder=True,
        use_tpu=FLAGS.use_tpu,
        bsz=FLAGS.train_batch_size,
        is_v2=False)
    estimator.train(input_fn=train_input_fn, max_steps=num_train_steps)

  if FLAGS.do_predict:
    with tf.gfile.Open(FLAGS.predict_file) as predict_file:
      prediction_json = json.load(predict_file)["data"]

    eval_examples = squad_utils.read_squad_examples(
        input_file=FLAGS.predict_file, is_training=False)

    if (tf.gfile.Exists(FLAGS.predict_feature_file) and tf.gfile.Exists(
        FLAGS.predict_feature_left_file)):
      tf.logging.info("Loading eval features from {}".format(
          FLAGS.predict_feature_left_file))
      with tf.gfile.Open(FLAGS.predict_feature_left_file, "rb") as fin:
        eval_features = pickle.load(fin)
    else:
      eval_writer = squad_utils.FeatureWriter(
          filename=FLAGS.predict_feature_file, is_training=False)
      eval_features = []

      def append_feature(feature):
        eval_features.append(feature)
        eval_writer.process_feature(feature)

      squad_utils.convert_examples_to_features(
          examples=eval_examples,
          tokenizer=tokenizer,
          max_seq_length=FLAGS.max_seq_length,
          doc_stride=FLAGS.doc_stride,
          max_query_length=FLAGS.max_query_length,
          is_training=False,
          output_fn=append_feature,
          do_lower_case=FLAGS.do_lower_case)
      eval_writer.close()

      with tf.gfile.Open(FLAGS.predict_feature_left_file, "wb") as fout:
        pickle.dump(eval_features, fout)

    tf.logging.info("***** Running predictions *****")
    tf.logging.info("  Num orig examples = %d", len(eval_examples))
    tf.logging.info("  Num split examples = %d", len(eval_features))
    tf.logging.info("  Batch size = %d", FLAGS.predict_batch_size)

    predict_input_fn = squad_utils.input_fn_builder(
        input_file=FLAGS.predict_feature_file,
        seq_length=FLAGS.max_seq_length,
        is_training=False,
        drop_remainder=False,
        use_tpu=FLAGS.use_tpu,
        bsz=FLAGS.predict_batch_size,
        is_v2=False)

    def get_result(checkpoint):
      """Evaluate the checkpoint on SQuAD 1.0."""
      # If running eval on the TPU, you will need to specify the number of
      # steps.
      reader = tf.train.NewCheckpointReader(checkpoint)
      global_step = reader.get_tensor(tf.GraphKeys.GLOBAL_STEP)
      all_results = []
      for result in estimator.predict(
          predict_input_fn, yield_single_examples=True,
          checkpoint_path=checkpoint):
        if len(all_results) % 1000 == 0:
          tf.logging.info("Processing example: %d" % (len(all_results)))
        unique_id = int(result["unique_ids"])
        start_log_prob = [float(x) for x in result["start_log_prob"].flat]
        end_log_prob = [float(x) for x in result["end_log_prob"].flat]
        all_results.append(
            squad_utils.RawResult(
                unique_id=unique_id,
                start_log_prob=start_log_prob,
                end_log_prob=end_log_prob))

      output_prediction_file = os.path.join(
          FLAGS.output_dir, "predictions.json")
      output_nbest_file = os.path.join(
          FLAGS.output_dir, "nbest_predictions.json")

      result_dict = {}
      squad_utils.accumulate_predictions_v1(
          result_dict, eval_examples, eval_features,
          all_results, FLAGS.n_best_size, FLAGS.max_answer_length)
      predictions = squad_utils.write_predictions_v1(
          result_dict, eval_examples, eval_features, all_results,
          FLAGS.n_best_size, FLAGS.max_answer_length,
          output_prediction_file, output_nbest_file)

      return squad_utils.evaluate_v1(
          prediction_json, predictions), int(global_step)

    def _find_valid_cands(curr_step):
      filenames = tf.gfile.ListDirectory(FLAGS.output_dir)
      candidates = []
      for filename in filenames:
        if filename.endswith(".index"):
          ckpt_name = filename[:-6]
          idx = ckpt_name.split("-")[-1]
          if idx != "best" and int(idx) > curr_step:
            candidates.append(filename)
      return candidates

    output_eval_file = os.path.join(FLAGS.output_dir, "eval_results.txt")
    checkpoint_path = os.path.join(FLAGS.output_dir, "model.ckpt-best")
    key_name = "f1"
    writer = tf.gfile.GFile(output_eval_file, "w")
    if tf.gfile.Exists(checkpoint_path + ".index"):
      result = get_result(checkpoint_path)
      best_perf = result[0][key_name]
      global_step = result[1]
    else:
      global_step = -1
      best_perf = -1
      checkpoint_path = None
    while global_step < num_train_steps:
      steps_and_files = {}
      filenames = tf.gfile.ListDirectory(FLAGS.output_dir)
      for filename in filenames:
        if filename.endswith(".index"):
          ckpt_name = filename[:-6]
          cur_filename = os.path.join(FLAGS.output_dir, ckpt_name)
          if cur_filename.split("-")[-1] == "best":
            continue
          gstep = int(cur_filename.split("-")[-1])
          if gstep not in steps_and_files:
            tf.logging.info("Add {} to eval list.".format(cur_filename))
            steps_and_files[gstep] = cur_filename
      tf.logging.info("found {} files.".format(len(steps_and_files)))
      if not steps_and_files:
        tf.logging.info("found 0 file, global step: {}. Sleeping."
                        .format(global_step))
        time.sleep(1)
      else:
        for ele in sorted(steps_and_files.items()):
          step, checkpoint_path = ele
          if global_step >= step:
            if len(_find_valid_cands(step)) > 1:
              for ext in ["meta", "data-00000-of-00001", "index"]:
                src_ckpt = checkpoint_path + ".{}".format(ext)
                tf.logging.info("removing {}".format(src_ckpt))
                tf.gfile.Remove(src_ckpt)
            continue
          result, global_step = get_result(checkpoint_path)
          tf.logging.info("***** Eval results *****")
          for key in sorted(result.keys()):
            tf.logging.info("  %s = %s", key, str(result[key]))
            writer.write("%s = %s\n" % (key, str(result[key])))
          if result[key_name] > best_perf:
            best_perf = result[key_name]
            for ext in ["meta", "data-00000-of-00001", "index"]:
              src_ckpt = checkpoint_path + ".{}".format(ext)
              tgt_ckpt = checkpoint_path.rsplit(
                  "-", 1)[0] + "-best.{}".format(ext)
              tf.logging.info("saving {} to {}".format(src_ckpt, tgt_ckpt))
              tf.gfile.Copy(src_ckpt, tgt_ckpt, overwrite=True)
              writer.write("saved {} to {}\n".format(src_ckpt, tgt_ckpt))
          writer.write("best {} = {}\n".format(key_name, best_perf))
          tf.logging.info("  best {} = {}\n".format(key_name, best_perf))

          if len(_find_valid_cands(global_step)) > 2:
            for ext in ["meta", "data-00000-of-00001", "index"]:
              src_ckpt = checkpoint_path + ".{}".format(ext)
              tf.logging.info("removing {}".format(src_ckpt))
              tf.gfile.Remove(src_ckpt)
          writer.write("=" * 50 + "\n")

    checkpoint_path = os.path.join(FLAGS.output_dir, "model.ckpt-best")
    result, global_step = get_result(checkpoint_path)

    tf.logging.info("***** Final Eval results *****\n")
    writer.write("===== Hyperparameters =====\n")
    writer.write("Training batch size: {}\n".format(FLAGS.train_batch_size))
    writer.write("Max sequence length: {}\n".format(FLAGS.max_seq_length))
    writer.write("Learning rate: {}\n".format(FLAGS.learning_rate))
    if num_train_steps and num_warmup_steps:
        writer.write("Training steps: {}\n".format(num_train_steps))
        writer.write("Warmup steps: {}\n".format(num_warmup_steps))
    writer.write("===== Evuations =====\n")

    for key in sorted(result.keys()):
      tf.logging.info("  %s = %s", key, str(result[key]))
      writer.write("%s = %s\n" % (key, str(result[key])))
    writer.write("best perf happened at step: {}".format(global_step))
# Author: dgm
# Description: 数据预处理
# Date: 2020-08-14
import math
import codecs
import random

from albert import tokenization
from utils import create_dico, create_mapping, zero_digits

tokenizer = tokenization.FullTokenizer(
    vocab_file='albert_model/albert_base/vocab_chinese.txt',
    do_lower_case=True)


def load_sentences(path, lower, zeros):
    """
    Load sentences. A line must contain at least a word and its tag.
    Sentences are separated by empty lines.
    """
    sentences = []
    sentence = []
    num = 0
    for line in codecs.open(path, 'r', 'utf8'):
        num += 1
        line = zero_digits(line.rstrip()) if zeros else line.rstrip()
        if not line:
            if len(sentence) > 0:
                if 'DOCSTART' not in sentence[0][0]:
                    sentences.append(sentence)
                sentence = []
Example #12
0
    def trans_to_features(self, examples, is_training):
        """
        将输入转化为索引表示
        :param examples: 输入
        :param is_training:
        :return:
        """
        tokenizer = tokenization.FullTokenizer(vocab_file=self.__vocab_path,
                                               do_lower_case=True)
        features = []
        unique_id = 1000000000
        for (example_index, example) in enumerate(examples):
            # 用wordpiece的方法对query进行分词处理
            query_tokens = tokenizer.tokenize(example['question'])
            # 给定query一个最大长度来控制query的长度
            if len(query_tokens) > self.__query_length:
                query_tokens = query_tokens[:self.__query_length]

            # 主要是针对context构造索引,之前我们将中文,标点符号,空格,一连串的数字,英文单词分割存储在doc_tokens中
            # 但在bert的分词器中会将一连串的数字,中文,英文等分割成子词,也就是说经过bert的分词之后得到的tokens和之前
            # 获得的doc_tokens是不一样的,因此我们仍需要对start和end position从doc_tokens中的位置映射到当前tokens的位置
            tok_to_orig_index = []  # 存储未分词的token的索引,但长度和下面的相等
            orig_to_tok_index = []  # 存储分词后的token的索引,但索引不是连续的,会存在跳跃的情况
            all_doc_tokens = []  # 存储分词后的token,理论上长度是要大于all_tokens的

            for (i, token) in enumerate(example['doc_tokens']):
                sub_tokens = tokenizer.tokenize(token)
                # orig_to_tok_index的长度等于doc_tokens,里面每个值存储的是doc_tokens中的token在all_doc_tokens中的起止索引值
                # 用来将在all_token中的start和end转移到all_doc_tokens中
                orig_to_tok_index.append([len(all_doc_tokens)])
                for sub_token in sub_tokens:
                    # tok_to_orig_index的长度等于all_doc_tokens, 里面会有重复的值
                    tok_to_orig_index.append(i)
                    all_doc_tokens.append(sub_token)
                orig_to_tok_index[-1].append(len(all_doc_tokens) - 1)

            tok_start_position = -1
            tok_end_position = -1
            if is_training:
                # 原来token到新token的映射,这是新token的起点
                tok_start_position = orig_to_tok_index[
                    example['start_position']][0]
                tok_end_position = orig_to_tok_index[
                    example['end_position']][1]

                tok_start_position, tok_end_position = self._improve_answer_span(
                    all_doc_tokens, tok_start_position, tok_end_position,
                    tokenizer, example['orig_answer_text'])

            # The -3 accounts for [CLS], [SEP] and [SEP]
            max_tokens_for_doc = self.__max_length - len(query_tokens) - 3

            doc_spans = []
            _DocSpan = collections.namedtuple("DocSpan", ["start", "length"])

            # 在使用bert的时候,一般会将最大的序列长度控制在512,因此对于长度大于最大长度的context,我们需要将其分成多个片段
            # 采用滑窗的方式,滑窗大小是小于最大长度的,因此分割的片段之间是存在重复的子片段。
            start_offset = 0  # 截取的片段的起始位置
            while start_offset < len(all_doc_tokens):
                length = len(all_doc_tokens) - start_offset

                # 当长度超标,需要使用滑窗
                if length > max_tokens_for_doc:
                    length = max_tokens_for_doc
                doc_spans.append(_DocSpan(start=start_offset, length=length))
                if start_offset + length == len(
                        all_doc_tokens):  # 当length < max_len时,该条件成立
                    break
                start_offset += min(length, self.__doc_stride)

            # 组合query和context的片段成一个序列输入到bert中
            for (doc_span_index, doc_span) in enumerate(doc_spans):
                tokens = []
                token_to_orig_map = {}
                # 因为片段之间会存在重复的子片段,但是子片段中的token在不同的片段中的重要性是不一样的,
                # 在这里根据上下文的数量来决定token的重要性,在之后预测时对于出现在两个片段中的token,只取重要性高的片段
                # 中的token的分数作为该token的分数
                token_is_max_context = {}
                segment_ids = []
                tokens.append("[CLS]")
                segment_ids.append(0)
                for token in query_tokens:
                    tokens.append(token)
                    segment_ids.append(0)
                tokens.append("[SEP]")
                segment_ids.append(0)

                for i in range(doc_span.length):
                    split_token_index = doc_span.start + i
                    token_to_orig_map[len(tokens)] = tok_to_orig_index[
                        split_token_index]  # 映射当前span组成的句子对的索引到原始token的索引

                    # 在利用滑窗分割多个span时会存在有的词出现在两个span中,但最后统计的时候,我们只能选择一个span,因此
                    # 作者根据该词上下文词的数量构建了一个分数,取分数最高的那个span
                    is_max_context = self._check_is_max_context(
                        doc_spans, doc_span_index, split_token_index)
                    token_is_max_context[len(tokens)] = is_max_context
                    tokens.append(all_doc_tokens[split_token_index])
                    segment_ids.append(1)
                tokens.append("[SEP]")
                segment_ids.append(1)

                input_ids = tokenizer.convert_tokens_to_ids(tokens)

                # The mask has 1 for real tokens and 0 for padding tokens. Only real
                # tokens are attended to.
                input_mask = [1] * len(input_ids)

                # Zero-pad up to the sequence length.
                while len(input_ids) < self.__max_length:
                    input_ids.append(0)
                    input_mask.append(0)
                    segment_ids.append(0)

                assert len(input_ids) == self.__max_length
                assert len(input_mask) == self.__max_length
                assert len(segment_ids) == self.__max_length

                start_position = -1
                end_position = -1
                if is_training:
                    # For training, if our document chunk does not contain an annotation
                    # we throw it out, since there is nothing to predict.
                    if tok_start_position == -1 and tok_end_position == -1:
                        start_position = 0  # 问题本来没答案,0是[CLS]的位子
                        end_position = 0
                    else:  # 如果原本是有答案的,那么去除没有答案的feature
                        out_of_span = False
                        doc_start = doc_span.start  # 映射回原文的起点和终点
                        doc_end = doc_span.start + doc_span.length - 1

                        if not (tok_start_position >= doc_start and
                                tok_end_position <= doc_end):  # 该划窗没答案作为无答案增强
                            out_of_span = True
                        if out_of_span:
                            start_position = 0
                            end_position = 0
                        else:
                            doc_offset = len(query_tokens) + 2
                            start_position = tok_start_position - doc_start + doc_offset
                            end_position = tok_end_position - doc_start + doc_offset

                features.append({
                    'unique_id': unique_id,
                    'example_index': example_index,
                    'doc_span_index': doc_span_index,
                    'tokens': tokens,
                    'token_to_orig_map': token_to_orig_map,
                    'token_is_max_context': token_is_max_context,
                    'input_ids': input_ids,
                    'input_mask': input_mask,
                    'segment_ids': segment_ids,
                    'start_position': start_position,
                    'end_position': end_position
                })
                unique_id += 1
        return features
Example #13
0
def main(_):
    tf.logging.set_verbosity(tf.logging.INFO)

    processors = {
        "cola": ColaProcessor,
        "mnli": MnliProcessor,
        "mrpc": MrpcProcessor,
        "xnli": XnliProcessor,
    }

    tokenization.validate_case_matches_checkpoint(FLAGS.do_lower_case,
                                                  FLAGS.init_checkpoint)

    if not FLAGS.do_train and not FLAGS.do_eval and not FLAGS.do_predict:
        raise ValueError(
            "At least one of `do_train`, `do_eval` or `do_predict' must be True."
        )

    albert_config = modeling.AlbertConfig.from_json_file(
        FLAGS.albert_config_file)

    if FLAGS.max_seq_length > albert_config.max_position_embeddings:
        raise ValueError(
            "Cannot use sequence length %d because the ALBERT model "
            "was only trained up to sequence length %d" %
            (FLAGS.max_seq_length, albert_config.max_position_embeddings))

    tf.gfile.MakeDirs(FLAGS.output_dir)

    task_name = FLAGS.task_name.lower()

    if task_name not in processors:
        raise ValueError("Task not found: %s" % (task_name))

    processor = processors[task_name]()

    label_list = processor.get_labels()

    tokenizer = tokenization.FullTokenizer(
        vocab_file=FLAGS.vocab_file,
        sp_cdc_file=FLAGS.cdc_spm_model_file,
        do_lower_case=FLAGS.do_lower_case,
        spm_model_file=FLAGS.spm_model_file)

    tpu_cluster_resolver = None
    if FLAGS.use_tpu and FLAGS.tpu_name:
        tpu_cluster_resolver = contrib_cluster_resolver.TPUClusterResolver(
            FLAGS.tpu_name, zone=FLAGS.tpu_zone, project=FLAGS.gcp_project)

    is_per_host = contrib_tpu.InputPipelineConfig.PER_HOST_V2
    run_config = contrib_tpu.RunConfig(
        cluster=tpu_cluster_resolver,
        master=FLAGS.master,
        model_dir=FLAGS.output_dir,
        save_checkpoints_steps=FLAGS.save_checkpoints_steps,
        keep_checkpoint_max=8,
        tpu_config=contrib_tpu.TPUConfig(
            iterations_per_loop=FLAGS.iterations_per_loop,
            num_shards=FLAGS.num_tpu_cores,
            per_host_input_for_training=is_per_host))

    train_examples = None
    num_train_steps = None
    num_warmup_steps = None
    if FLAGS.do_train:
        train_examples = processor.get_train_examples(FLAGS.data_dir)
        num_train_steps = int(
            len(train_examples) / FLAGS.train_batch_size *
            FLAGS.num_train_epochs)
        num_warmup_steps = int(num_train_steps * FLAGS.warmup_proportion)

    model_fn = model_fn_builder(albert_config=albert_config,
                                num_labels=len(label_list),
                                init_checkpoint=FLAGS.init_checkpoint,
                                learning_rate=FLAGS.learning_rate,
                                num_train_steps=num_train_steps,
                                num_warmup_steps=num_warmup_steps,
                                use_tpu=FLAGS.use_tpu,
                                use_one_hot_embeddings=FLAGS.use_tpu)

    # If TPU is not available, this will fall back to normal Estimator on CPU
    # or GPU.
    estimator = contrib_tpu.TPUEstimator(
        use_tpu=FLAGS.use_tpu,
        model_fn=model_fn,
        config=run_config,
        train_batch_size=FLAGS.train_batch_size,
        eval_batch_size=FLAGS.eval_batch_size,
        predict_batch_size=FLAGS.predict_batch_size)

    if FLAGS.do_train:
        if FLAGS.data_examples:
            tf.gfile.MakeDirs(FLAGS.data_examples)
            train_file = os.path.join(FLAGS.data_examples, "train.tf_record")
        else:
            train_file = os.path.join(FLAGS.output_dir, "train.tf_record")
        file_based_convert_examples_to_features(train_examples, label_list,
                                                FLAGS.max_seq_length,
                                                tokenizer, train_file)
        tf.logging.info("***** Running training *****")
        tf.logging.info("  Num examples = %d", len(train_examples))
        tf.logging.info("  Batch size = %d", FLAGS.train_batch_size)
        tf.logging.info("  Num steps = %d", num_train_steps)
        train_input_fn = file_based_input_fn_builder(
            input_file=train_file,
            seq_length=FLAGS.max_seq_length,
            is_training=True,
            drop_remainder=True)
        tf.logging.set_verbosity(tf.logging.INFO)
        estimator.train(input_fn=train_input_fn, max_steps=num_train_steps)

    if FLAGS.do_eval:
        eval_examples = processor.get_dev_examples(FLAGS.data_dir)
        num_actual_eval_examples = len(eval_examples)
        if FLAGS.use_tpu:
            # TPU requires a fixed batch size for all batches, therefore the number
            # of examples must be a multiple of the batch size, or else examples
            # will get dropped. So we pad with fake examples which are ignored
            # later on. These do NOT count towards the metric (all tf.metrics
            # support a per-instance weight, and these get a weight of 0.0).
            while len(eval_examples) % FLAGS.eval_batch_size != 0:
                eval_examples.append(PaddingInputExample())

        if FLAGS.data_examples:
            tf.gfile.MakeDirs(FLAGS.data_examples)
            eval_file = os.path.join(FLAGS.data_examples, "eval.tf_record")
        else:
            eval_file = os.path.join(FLAGS.output_dir, "eval.tf_record")
        file_based_convert_examples_to_features(eval_examples, label_list,
                                                FLAGS.max_seq_length,
                                                tokenizer, eval_file)

        tf.logging.info("***** Running evaluation *****")
        tf.logging.info("  Num examples = %d (%d actual, %d padding)",
                        len(eval_examples), num_actual_eval_examples,
                        len(eval_examples) - num_actual_eval_examples)
        tf.logging.info("  Batch size = %d", FLAGS.eval_batch_size)

        # This tells the estimator to run through the entire set.
        eval_steps = None
        # However, if running eval on the TPU, you will need to specify the
        # number of steps.
        if FLAGS.use_tpu:
            assert len(eval_examples) % FLAGS.eval_batch_size == 0
            eval_steps = int(len(eval_examples) // FLAGS.eval_batch_size)

        eval_drop_remainder = True if FLAGS.use_tpu else False
        eval_input_fn = file_based_input_fn_builder(
            input_file=eval_file,
            seq_length=FLAGS.max_seq_length,
            is_training=False,
            drop_remainder=eval_drop_remainder)

        result = estimator.evaluate(input_fn=eval_input_fn, steps=eval_steps)

        output_eval_file = os.path.join(FLAGS.output_dir, "eval_results.txt")
        with tf.gfile.GFile(output_eval_file, "w") as writer:
            tf.logging.info("***** Eval results *****")
            for key in sorted(result.keys()):
                tf.logging.info("  %s = %s", key, str(result[key]))
                writer.write("%s = %s\n" % (key, str(result[key])))

    if FLAGS.do_predict:
        predict_examples = processor.get_test_examples(FLAGS.data_dir)
        num_actual_predict_examples = len(predict_examples)
        if FLAGS.use_tpu:
            # TPU requires a fixed batch size for all batches, therefore the number
            # of examples must be a multiple of the batch size, or else examples
            # will get dropped. So we pad with fake examples which are ignored
            # later on.
            while len(predict_examples) % FLAGS.predict_batch_size != 0:
                predict_examples.append(PaddingInputExample())

        if FLAGS.data_examples:
            tf.gfile.MakeDirs(FLAGS.data_examples)
            predict_file = os.path.join(FLAGS.data_examples,
                                        "predict.tf_record")
        else:
            predict_file = os.path.join(FLAGS.output_dir, "predict.tf_record")
        file_based_convert_examples_to_features(predict_examples, label_list,
                                                FLAGS.max_seq_length,
                                                tokenizer, predict_file)

        tf.logging.info("***** Running prediction*****")
        tf.logging.info("  Num examples = %d (%d actual, %d padding)",
                        len(predict_examples), num_actual_predict_examples,
                        len(predict_examples) - num_actual_predict_examples)
        tf.logging.info("  Batch size = %d", FLAGS.predict_batch_size)

        predict_drop_remainder = True if FLAGS.use_tpu else False
        predict_input_fn = file_based_input_fn_builder(
            input_file=predict_file,
            seq_length=FLAGS.max_seq_length,
            is_training=False,
            drop_remainder=predict_drop_remainder)

        result = estimator.predict(input_fn=predict_input_fn)

        output_predict_file = os.path.join(FLAGS.output_dir,
                                           "test_results.tsv")
        output_submit_file = os.path.join(FLAGS.output_dir,
                                          "submit_results.tsv")
        with tf.gfile.GFile(output_predict_file, "w") as pred_writer,\
            tf.gfile.GFile(output_submit_file, "w") as sub_writer:
            num_written_lines = 0
            tf.logging.info("***** Predict results *****")
            for (i, (example, prediction)) in\
                enumerate(zip(predict_examples, result)):
                probabilities = prediction["probabilities"]
                if i >= num_actual_predict_examples:
                    break
                output_line = "\t".join(
                    str(class_probability)
                    for class_probability in probabilities) + "\n"
                pred_writer.write(output_line)

                actual_label = label_list[int(prediction["predictions"])]
                sub_writer.write(
                    six.ensure_str(example.guid) + "\t" + actual_label + "\n")
                num_written_lines += 1
        assert num_written_lines == num_actual_predict_examples
Example #14
0
def main(_):
  tf.logging.set_verbosity(tf.logging.INFO)

  processors = CommonsenseQAProcessor

  if not FLAGS.do_train and not FLAGS.do_eval and not FLAGS.do_predict:
    raise ValueError(
        "At least one of `do_train`, `do_eval` or `do_predict' must be True.")

  if not FLAGS.albert_config_file:
    raise ValueError("At least one of `--albert_config_file`must be set")

  if FLAGS.albert_config_file:
    albert_config = modeling.AlbertConfig.from_json_file(FLAGS.albert_config_file)
    if FLAGS.max_seq_length > albert_config.max_position_embeddings:
      raise ValueError(
          "Cannot use sequence length %d because the ALBERT model "
          "was only trained up to sequence length %d" %
          (FLAGS.max_seq_length, albert_config.max_position_embeddings))
  else:
    albert_config = None  # Get the config from TF-Hub.

  tf.gfile.MakeDirs(FLAGS.output_dir)

  processor = processors(
      use_spm=True if FLAGS.spm_model_file else False,
      do_lower_case=FLAGS.do_lower_case)

  label_list = processor.get_labels()

  tokenizer = tokenization.FullTokenizer(
      vocab_file=FLAGS.vocab_file,
      do_lower_case=FLAGS.do_lower_case,
      spm_model_file=FLAGS.spm_model_file)

  tpu_cluster_resolver = None
  if FLAGS.use_tpu and FLAGS.tpu_name:
    tpu_cluster_resolver = contrib_cluster_resolver.TPUClusterResolver(
        FLAGS.tpu_name, zone=FLAGS.tpu_zone, project=FLAGS.gcp_project)

  is_per_host = contrib_tpu.InputPipelineConfig.PER_HOST_V2
  if FLAGS.do_train:
    iterations_per_loop = int(min(FLAGS.iterations_per_loop, FLAGS.save_checkpoints_steps))
  else:
    iterations_per_loop = FLAGS.iterations_per_loop
  run_config = contrib_tpu.RunConfig(
      cluster=tpu_cluster_resolver,
      master=FLAGS.master,
      model_dir=FLAGS.output_dir,
      save_checkpoints_steps=int(FLAGS.save_checkpoints_steps),
      keep_checkpoint_max=0,
      tpu_config=contrib_tpu.TPUConfig(
          iterations_per_loop=iterations_per_loop,
          num_shards=FLAGS.num_tpu_cores,
          per_host_input_for_training=is_per_host))

  train_examples = processor.get_train_examples(FLAGS.data_dir)
  num_train_steps = int(len(train_examples) / FLAGS.train_batch_size * FLAGS.num_train_epochs)
  num_warmup_steps  = int(num_train_steps * FLAGS.warmup_proportion)

  model_fn = model_fn_builder(
      albert_config=albert_config,
      num_labels=len(label_list),
      init_checkpoint=FLAGS.init_checkpoint,
      learning_rate=FLAGS.learning_rate,
      num_train_steps= num_train_steps,
      num_warmup_steps=num_warmup_steps,
      use_tpu=FLAGS.use_tpu,
      use_one_hot_embeddings=FLAGS.use_tpu,
      optimizer=FLAGS.optimizer)

  # If TPU is not available, this will fall back to normal Estimator on CPU
  # or GPU.
  estimator = contrib_tpu.TPUEstimator(
      use_tpu=FLAGS.use_tpu,
      model_fn=model_fn,
      config=run_config,
      train_batch_size=FLAGS.train_batch_size,
      eval_batch_size=FLAGS.eval_batch_size,
      predict_batch_size=FLAGS.predict_batch_size)

  if FLAGS.do_train:
    cached_dir = FLAGS.cached_dir
    if not cached_dir:
      cached_dir = FLAGS.output_dir
    train_file = os.path.join(cached_dir, "train.tf_record")
    if not tf.gfile.Exists(train_file):
      file_based_convert_examples_to_features(
          train_examples, label_list, FLAGS.max_seq_length, tokenizer, train_file)
    tf.logging.info("***** Running training *****")
    tf.logging.info("  Num examples = %d", len(train_examples))
    tf.logging.info("  Batch size = %d", FLAGS.train_batch_size)
    tf.logging.info("  Num steps = %d", num_train_steps)
    train_input_fn = file_based_input_fn_builder(
        input_file=train_file,
        seq_length=FLAGS.max_seq_length,
        is_training=True,
        drop_remainder=True)
    estimator.train(input_fn=train_input_fn, max_steps=num_train_steps)

  if FLAGS.do_eval:
    eval_examples = processor.get_dev_examples(FLAGS.data_dir)
    num_actual_eval_examples = len(eval_examples)
    if FLAGS.use_tpu:
      while len(eval_examples) % FLAGS.eval_batch_size != 0:
        eval_examples.append(classifier_utils.PaddingInputExample())

    cached_dir = FLAGS.cached_dir
    if not cached_dir:
      cached_dir = FLAGS.output_dir
    eval_file = os.path.join(cached_dir, "eval.tf_record")
    if not tf.gfile.Exists(eval_file):
      file_based_convert_examples_to_features(
          eval_examples, label_list, FLAGS.max_seq_length, tokenizer, eval_file)

    tf.logging.info("***** Running evaluation *****")
    tf.logging.info("  Num examples = %d (%d actual, %d padding)",
                    len(eval_examples), num_actual_eval_examples,
                    len(eval_examples) - num_actual_eval_examples)
    tf.logging.info("  Batch size = %d", FLAGS.eval_batch_size)

    # This tells the estimator to run through the entire set.
    eval_steps = None
    # However, if running eval on the TPU, you will need to specify the
    # number of steps.
    if FLAGS.use_tpu:
      assert len(eval_examples) % FLAGS.eval_batch_size == 0
      eval_steps = int(len(eval_examples) // FLAGS.eval_batch_size)

    eval_drop_remainder = True if FLAGS.use_tpu else False
    eval_input_fn = file_based_input_fn_builder(
        input_file=eval_file,
        seq_length=FLAGS.max_seq_length,
        is_training=False,
        drop_remainder=eval_drop_remainder)

    best_trial_info_file = os.path.join(FLAGS.output_dir, "best_trial.txt")

    def _best_trial_info():
      """Returns information about which checkpoints have been evaled so far."""
      if tf.gfile.Exists(best_trial_info_file):
        with tf.gfile.GFile(best_trial_info_file, "r") as best_info:
          global_step, best_metric_global_step, metric_value = (
              best_info.read().split(":"))
          global_step = int(global_step)
          best_metric_global_step = int(best_metric_global_step)
          metric_value = float(metric_value)
      else:
        metric_value = -1
        best_metric_global_step = -1
        global_step = -1
      tf.logging.info(
          "Best trial info: Step: %s, Best Value Step: %s, "
          "Best Value: %s", global_step, best_metric_global_step, metric_value)
      return global_step, best_metric_global_step, metric_value

    def _remove_checkpoint(checkpoint_path):
      for ext in ["meta", "data-00000-of-00001", "index"]:
        src_ckpt = checkpoint_path + ".{}".format(ext)
        tf.logging.info("removing {}".format(src_ckpt))
        tf.gfile.Remove(src_ckpt)

    def _find_valid_cands(curr_step):
      filenames = tf.gfile.ListDirectory(FLAGS.output_dir)
      candidates = []
      for filename in filenames:
        if filename.endswith(".index"):
          ckpt_name = filename[:-6]
          idx = ckpt_name.split("-")[-1]
          if int(idx) > curr_step:
            candidates.append(filename)
      return candidates

    output_eval_file = os.path.join(FLAGS.output_dir, "eval_results.txt")

    global_step, best_perf_global_step, best_perf = _best_trial_info()
    writer = tf.gfile.GFile(output_eval_file, "w")
    while global_step < num_train_steps:
      steps_and_files = {}
      filenames = tf.gfile.ListDirectory(FLAGS.output_dir)
      for filename in filenames:
        if filename.endswith(".index"):
          ckpt_name = filename[:-6]
          cur_filename = os.path.join(FLAGS.output_dir, ckpt_name)
          if cur_filename.split("-")[-1] == "best":
            continue
          gstep = int(cur_filename.split("-")[-1])
          if gstep not in steps_and_files:
            tf.logging.info("Add {} to eval list.".format(cur_filename))
            steps_and_files[gstep] = cur_filename
      tf.logging.info("found {} files.".format(len(steps_and_files)))
      if not steps_and_files:
        tf.logging.info("found 0 file, global step: {}. Sleeping."
                        .format(global_step))
        time.sleep(60)
      else:
        for checkpoint in sorted(steps_and_files.items()):
          step, checkpoint_path = checkpoint
          if global_step >= step:
            if (best_perf_global_step != step and
                len(_find_valid_cands(step)) > 1):
              _remove_checkpoint(checkpoint_path)
            continue
          result = estimator.evaluate(
              input_fn=eval_input_fn,
              steps=eval_steps,
              checkpoint_path=checkpoint_path)
          global_step = result["global_step"]
          tf.logging.info("***** Eval results *****")
          for key in sorted(result.keys()):
            tf.logging.info("  %s = %s", key, str(result[key]))
            writer.write("%s = %s\n" % (key, str(result[key])))
          writer.write("best = {}\n".format(best_perf))
          if result["eval_accuracy"] > best_perf:
            best_perf = result["eval_accuracy"]
            best_perf_global_step = global_step
          elif len(_find_valid_cands(global_step)) > 1:
            _remove_checkpoint(checkpoint_path)
          writer.write("=" * 50 + "\n")
          writer.flush()
          with tf.gfile.GFile(best_trial_info_file, "w") as best_info:
            best_info.write("{}:{}:{}".format(
                global_step, best_perf_global_step, best_perf))
    writer.close()

    for ext in ["meta", "data-00000-of-00001", "index"]:
      src_ckpt = "model.ckpt-{}.{}".format(best_perf_global_step, ext)
      tgt_ckpt = "model.ckpt-best.{}".format(ext)
      tf.logging.info("saving {} to {}".format(src_ckpt, tgt_ckpt))
      tf.io.gfile.rename(
          os.path.join(FLAGS.output_dir, src_ckpt),
          os.path.join(FLAGS.output_dir, tgt_ckpt),
          overwrite=True)

  if FLAGS.do_predict:
    predict_examples = processor.get_test_examples(FLAGS.data_dir)
    num_actual_predict_examples = len(predict_examples)
    if FLAGS.use_tpu:
      while len(predict_examples) % FLAGS.predict_batch_size != 0:
        predict_examples.append(classifier_utils.PaddingInputExample())

    predict_file = os.path.join(FLAGS.output_dir, "predict.tf_record")
    file_based_convert_examples_to_features(
        predict_examples, label_list,
        FLAGS.max_seq_length, tokenizer,
        predict_file)

    tf.logging.info("***** Running prediction*****")
    tf.logging.info("  Num examples = %d (%d actual, %d padding)",
                    len(predict_examples), num_actual_predict_examples,
                    len(predict_examples) - num_actual_predict_examples)
    tf.logging.info("  Batch size = %d", FLAGS.predict_batch_size)

    predict_drop_remainder = True if FLAGS.use_tpu else False
    predict_input_fn = file_based_input_fn_builder(
        input_file=predict_file,
        seq_length=FLAGS.max_seq_length,
        is_training=False,
        drop_remainder=predict_drop_remainder)

    checkpoint_path = os.path.join(FLAGS.output_dir, "model.ckpt-best")
    result = estimator.predict(
        input_fn=predict_input_fn,
        checkpoint_path=checkpoint_path)

    output_predict_file = os.path.join(FLAGS.output_dir, "test_results.csv")
    output_submit_file = os.path.join(FLAGS.output_dir, "submit_results.csv")
    with tf.gfile.GFile(output_predict_file, "w") as pred_writer,\
        tf.gfile.GFile(output_submit_file, "w") as sub_writer:
      sub_writer.write("index" + "\t" + "prediction\n")
      num_written_lines = 0
      tf.logging.info("***** Predict results *****")
      for (i, (example, prediction)) in\
          enumerate(zip(predict_examples, result)):
        probabilities = prediction["probabilities"]
        if i >= num_actual_predict_examples:
          break
        output_line = "\t".join(
            str(class_probability)
            for class_probability in probabilities) + "\n"
        pred_writer.write(output_line)

        actual_label = label_list[int(prediction["predictions"])]
        sub_writer.write(example.guid + "\t" + actual_label + "\n")
        num_written_lines += 1
    assert num_written_lines == num_actual_predict_examples
Example #15
0
def transformer(model: str = 'xlnet', quantized: bool = False, **kwargs):
    """
    Load Transformer toxicity model.

    Parameters
    ----------
    model : str, optional (default='bert')
        Model architecture supported. Allowed values:

        * ``'bert'`` - Google BERT BASE parameters.
        * ``'tiny-bert'`` - Google BERT TINY parameters.
        * ``'albert'`` - Google ALBERT BASE parameters.
        * ``'tiny-albert'`` - Google ALBERT TINY parameters.
        * ``'xlnet'`` - Google XLNET BASE parameters.
        * ``'alxlnet'`` - Malaya ALXLNET BASE parameters.

    quantized : bool, optional (default=False)
        if True, will load 8-bit quantized model. 
        Quantized model not necessary faster, totally depends on the machine.

    Returns
    -------
    result : malaya.model.bert.SIGMOID_BERT class
    """

    model = model.lower()
    if model not in _transformer_availability:
        raise Exception(
            'model not supported, please check supported models from `malaya.toxicity.available_transformer()`.'
        )

    check_file(
        PATH_TOXIC[model], S3_PATH_TOXIC[model], quantized = quantized, **kwargs
    )
    if quantized:
        model_path = 'quantized'
    else:
        model_path = 'model'
    g = load_graph(PATH_TOXIC[model][model_path], **kwargs)

    path = PATH_TOXIC

    if model in ['albert', 'bert', 'tiny-albert', 'tiny-bert']:
        if model in ['bert', 'tiny-bert']:
            from malaya.transformers.bert import (
                _extract_attention_weights_import,
            )
            from malaya.transformers.bert import bert_num_layers

            tokenizer = sentencepiece_tokenizer_bert(
                path[model]['tokenizer'], path[model]['vocab']
            )
        if model in ['albert', 'tiny-albert']:
            from malaya.transformers.albert import (
                _extract_attention_weights_import,
            )
            from malaya.transformers.albert import bert_num_layers
            from albert import tokenization

            tokenizer = tokenization.FullTokenizer(
                vocab_file = path[model]['vocab'],
                do_lower_case = False,
                spm_model_file = path[model]['tokenizer'],
            )

        return SIGMOID_BERT(
            X = g.get_tensor_by_name('import/Placeholder:0'),
            segment_ids = None,
            input_masks = g.get_tensor_by_name('import/Placeholder_1:0'),
            logits = g.get_tensor_by_name('import/logits:0'),
            logits_seq = g.get_tensor_by_name('import/logits_seq:0'),
            vectorizer = g.get_tensor_by_name('import/dense/BiasAdd:0'),
            sess = generate_session(graph = g, **kwargs),
            tokenizer = tokenizer,
            label = label,
            attns = _extract_attention_weights_import(
                bert_num_layers[model], g
            ),
            class_name = 'toxic',
        )

    if model in ['xlnet', 'alxlnet']:
        if model in ['xlnet']:
            from malaya.transformers.xlnet import (
                _extract_attention_weights_import,
            )
        if model in ['alxlnet']:
            from malaya.transformers.alxlnet import (
                _extract_attention_weights_import,
            )

        tokenizer = sentencepiece_tokenizer_xlnet(path[model]['tokenizer'])

        return SIGMOID_XLNET(
            X = g.get_tensor_by_name('import/Placeholder:0'),
            segment_ids = g.get_tensor_by_name('import/Placeholder_1:0'),
            input_masks = g.get_tensor_by_name('import/Placeholder_2:0'),
            logits = g.get_tensor_by_name('import/logits:0'),
            logits_seq = g.get_tensor_by_name('import/logits_seq:0'),
            vectorizer = g.get_tensor_by_name('import/transpose_3:0'),
            sess = generate_session(graph = g, **kwargs),
            tokenizer = tokenizer,
            label = label,
            attns = _extract_attention_weights_import(g),
            class_name = 'toxic',
        )
Example #16
0
def main(_):
    tf.logging.set_verbosity(tf.logging.INFO)

    processors = {
        "cola": classifier_utils.ColaProcessor,
        "mnli": classifier_utils.MnliProcessor,
        "mismnli": classifier_utils.MisMnliProcessor,
        "mrpc": classifier_utils.MrpcProcessor,
        "rte": classifier_utils.RteProcessor,
        "sst-2": classifier_utils.Sst2Processor,
        "sts-b": classifier_utils.StsbProcessor,
        "qqp": classifier_utils.QqpProcessor,
        "qnli": classifier_utils.QnliProcessor,
        "wnli": classifier_utils.WnliProcessor,
    }

    tokenization.validate_case_matches_checkpoint(FLAGS.do_lower_case,
                                                  FLAGS.init_checkpoint)

    if not FLAGS.do_train and not FLAGS.do_eval and not FLAGS.do_predict:
        raise ValueError(
            "At least one of `do_train`, `do_eval` or `do_predict' must be True."
        )

    albert_config = modeling.AlbertConfig.from_json_file(
        FLAGS.albert_config_file)

    if FLAGS.max_seq_length > albert_config.max_position_embeddings:
        raise ValueError(
            "Cannot use sequence length %d because the ALBERT model "
            "was only trained up to sequence length %d" %
            (FLAGS.max_seq_length, albert_config.max_position_embeddings))

    tf.gfile.MakeDirs(FLAGS.output_dir)

    task_name = FLAGS.task_name.lower()

    if task_name not in processors:
        raise ValueError("Task not found: %s" % (task_name))

    processor = processors[task_name](
        use_spm=True if FLAGS.spm_model_file else False,
        do_lower_case=FLAGS.do_lower_case)

    label_list = processor.get_labels()

    tokenizer = tokenization.FullTokenizer(vocab_file=FLAGS.vocab_file,
                                           do_lower_case=FLAGS.do_lower_case,
                                           spm_model_file=FLAGS.spm_model_file)

    tpu_cluster_resolver = None
    if FLAGS.use_tpu and FLAGS.tpu_name:
        tpu_cluster_resolver = contrib_cluster_resolver.TPUClusterResolver(
            FLAGS.tpu_name, zone=FLAGS.tpu_zone, project=FLAGS.gcp_project)

    is_per_host = contrib_tpu.InputPipelineConfig.PER_HOST_V2
    if FLAGS.do_train:
        iterations_per_loop = int(
            min(FLAGS.iterations_per_loop, FLAGS.save_checkpoints_steps))
    else:
        iterations_per_loop = FLAGS.iterations_per_loop
    run_config = contrib_tpu.RunConfig(
        cluster=tpu_cluster_resolver,
        master=FLAGS.master,
        model_dir=FLAGS.output_dir,
        save_checkpoints_steps=int(FLAGS.save_checkpoints_steps),
        keep_checkpoint_max=0,
        tpu_config=contrib_tpu.TPUConfig(
            iterations_per_loop=iterations_per_loop,
            num_shards=FLAGS.num_tpu_cores,
            per_host_input_for_training=is_per_host))

    train_examples = None
    if FLAGS.do_train:
        train_examples = processor.get_train_examples(FLAGS.data_dir)
    model_fn = classifier_utils.model_fn_builder(
        albert_config=albert_config,
        num_labels=len(label_list),
        init_checkpoint=FLAGS.init_checkpoint,
        learning_rate=FLAGS.learning_rate,
        num_train_steps=FLAGS.train_step,
        num_warmup_steps=FLAGS.warmup_step,
        use_tpu=FLAGS.use_tpu,
        use_one_hot_embeddings=FLAGS.use_tpu,
        task_name=task_name,
        optimizer=FLAGS.optimizer)

    # If TPU is not available, this will fall back to normal Estimator on CPU
    # or GPU.
    estimator = contrib_tpu.TPUEstimator(
        use_tpu=FLAGS.use_tpu,
        model_fn=model_fn,
        config=run_config,
        train_batch_size=FLAGS.train_batch_size,
        eval_batch_size=FLAGS.eval_batch_size,
        predict_batch_size=FLAGS.predict_batch_size)

    if FLAGS.do_train:
        cached_dir = FLAGS.cached_dir
        if not cached_dir:
            cached_dir = FLAGS.output_dir
        train_file = os.path.join(cached_dir, task_name + "_train.tf_record")
        if not tf.gfile.Exists(train_file):
            classifier_utils.file_based_convert_examples_to_features(
                train_examples, label_list, FLAGS.max_seq_length, tokenizer,
                train_file, task_name)
        tf.logging.info("***** Running training *****")
        tf.logging.info("  Num examples = %d", len(train_examples))
        tf.logging.info("  Batch size = %d", FLAGS.train_batch_size)
        tf.logging.info("  Num steps = %d", FLAGS.train_step)
        train_input_fn = classifier_utils.file_based_input_fn_builder(
            input_file=train_file,
            seq_length=FLAGS.max_seq_length,
            is_training=True,
            drop_remainder=True,
            task_name=task_name,
            use_tpu=FLAGS.use_tpu,
            bsz=FLAGS.train_batch_size)
        estimator.train(input_fn=train_input_fn, max_steps=FLAGS.train_step)

    if FLAGS.do_eval:
        eval_examples = processor.get_dev_examples(FLAGS.data_dir)
        num_actual_eval_examples = len(eval_examples)
        if FLAGS.use_tpu:
            # TPU requires a fixed batch size for all batches, therefore the number
            # of examples must be a multiple of the batch size, or else examples
            # will get dropped. So we pad with fake examples which are ignored
            # later on. These do NOT count towards the metric (all tf.metrics
            # support a per-instance weight, and these get a weight of 0.0).
            while len(eval_examples) % FLAGS.eval_batch_size != 0:
                eval_examples.append(classifier_utils.PaddingInputExample())

        cached_dir = FLAGS.cached_dir
        if not cached_dir:
            cached_dir = FLAGS.output_dir
        eval_file = os.path.join(cached_dir, task_name + "_eval.tf_record")
        if not tf.gfile.Exists(eval_file):
            classifier_utils.file_based_convert_examples_to_features(
                eval_examples, label_list, FLAGS.max_seq_length, tokenizer,
                eval_file, task_name)

        tf.logging.info("***** Running evaluation *****")
        tf.logging.info("  Num examples = %d (%d actual, %d padding)",
                        len(eval_examples), num_actual_eval_examples,
                        len(eval_examples) - num_actual_eval_examples)
        tf.logging.info("  Batch size = %d", FLAGS.eval_batch_size)

        # This tells the estimator to run through the entire set.
        eval_steps = None
        # However, if running eval on the TPU, you will need to specify the
        # number of steps.
        if FLAGS.use_tpu:
            assert len(eval_examples) % FLAGS.eval_batch_size == 0
            eval_steps = int(len(eval_examples) // FLAGS.eval_batch_size)

        eval_drop_remainder = True if FLAGS.use_tpu else False
        eval_input_fn = classifier_utils.file_based_input_fn_builder(
            input_file=eval_file,
            seq_length=FLAGS.max_seq_length,
            is_training=False,
            drop_remainder=eval_drop_remainder,
            task_name=task_name,
            use_tpu=FLAGS.use_tpu,
            bsz=FLAGS.eval_batch_size)

        def _find_valid_cands(curr_step):
            filenames = tf.gfile.ListDirectory(FLAGS.output_dir)
            candidates = []
            for filename in filenames:
                if filename.endswith(".index"):
                    ckpt_name = filename[:-6]
                    idx = ckpt_name.split("-")[-1]
                    if idx != "best" and int(idx) > curr_step:
                        candidates.append(filename)
            return candidates

        output_eval_file = os.path.join(FLAGS.output_dir, "eval_results.txt")
        checkpoint_path = os.path.join(FLAGS.output_dir, "model.ckpt-best")

        if task_name == "sts-b":
            key_name = "pearson"
        elif task_name == "cola":
            key_name = "matthew_corr"
        else:
            key_name = "eval_accuracy"

        if tf.gfile.Exists(checkpoint_path + ".index"):
            result = estimator.evaluate(input_fn=eval_input_fn,
                                        steps=eval_steps,
                                        checkpoint_path=checkpoint_path)
            best_perf = result[key_name]
            global_step = result["global_step"]
        else:
            global_step = -1
            best_perf = -1
            checkpoint_path = None
        writer = tf.gfile.GFile(output_eval_file, "w")
        while global_step < FLAGS.train_step:
            steps_and_files = {}
            filenames = tf.gfile.ListDirectory(FLAGS.output_dir)
            for filename in filenames:
                if filename.endswith(".index"):
                    ckpt_name = filename[:-6]
                    cur_filename = os.path.join(FLAGS.output_dir, ckpt_name)
                    if cur_filename.split("-")[-1] == "best":
                        continue
                    gstep = int(cur_filename.split("-")[-1])
                    if gstep not in steps_and_files:
                        tf.logging.info(
                            "Add {} to eval list.".format(cur_filename))
                        steps_and_files[gstep] = cur_filename
            tf.logging.info("found {} files.".format(len(steps_and_files)))
            if not steps_and_files:
                tf.logging.info(
                    "found 0 file, global step: {}. Sleeping.".format(
                        global_step))
                time.sleep(1)
            else:
                for checkpoint in sorted(steps_and_files.items()):
                    step, checkpoint_path = checkpoint
                    if global_step >= step:
                        if len(_find_valid_cands(step)) > 1:
                            for ext in [
                                    "meta", "data-00000-of-00001", "index"
                            ]:
                                src_ckpt = checkpoint_path + ".{}".format(ext)
                                tf.logging.info("removing {}".format(src_ckpt))
                                tf.gfile.Remove(src_ckpt)
                        continue
                    result = estimator.evaluate(
                        input_fn=eval_input_fn,
                        steps=eval_steps,
                        checkpoint_path=checkpoint_path)
                    global_step = result["global_step"]
                    tf.logging.info("***** Eval results *****")
                    for key in sorted(result.keys()):
                        tf.logging.info("  %s = %s", key, str(result[key]))
                        writer.write("%s = %s\n" % (key, str(result[key])))
                    writer.write("best = {}\n".format(best_perf))
                    if result[key_name] > best_perf:
                        best_perf = result[key_name]
                        for ext in ["meta", "data-00000-of-00001", "index"]:
                            src_ckpt = checkpoint_path + ".{}".format(ext)
                            tgt_ckpt = checkpoint_path.rsplit(
                                "-", 1)[0] + "-best.{}".format(ext)
                            tf.logging.info("saving {} to {}".format(
                                src_ckpt, tgt_ckpt))
                            tf.gfile.Copy(src_ckpt, tgt_ckpt, overwrite=True)
                            writer.write("saved {} to {}\n".format(
                                src_ckpt, tgt_ckpt))

                    if len(_find_valid_cands(global_step)) > 1:
                        for ext in ["meta", "data-00000-of-00001", "index"]:
                            src_ckpt = checkpoint_path + ".{}".format(ext)
                            tf.logging.info("removing {}".format(src_ckpt))
                            tf.gfile.Remove(src_ckpt)
                    writer.write("=" * 50 + "\n")
        writer.close()
    if FLAGS.do_predict:
        predict_examples = processor.get_test_examples(FLAGS.data_dir)
        num_actual_predict_examples = len(predict_examples)
        if FLAGS.use_tpu:
            # TPU requires a fixed batch size for all batches, therefore the number
            # of examples must be a multiple of the batch size, or else examples
            # will get dropped. So we pad with fake examples which are ignored
            # later on.
            while len(predict_examples) % FLAGS.predict_batch_size != 0:
                predict_examples.append(classifier_utils.PaddingInputExample())

        predict_file = os.path.join(FLAGS.output_dir, "predict.tf_record")
        classifier_utils.file_based_convert_examples_to_features(
            predict_examples, label_list, FLAGS.max_seq_length, tokenizer,
            predict_file, task_name)

        tf.logging.info("***** Running prediction*****")
        tf.logging.info("  Num examples = %d (%d actual, %d padding)",
                        len(predict_examples), num_actual_predict_examples,
                        len(predict_examples) - num_actual_predict_examples)
        tf.logging.info("  Batch size = %d", FLAGS.predict_batch_size)

        predict_drop_remainder = True if FLAGS.use_tpu else False
        predict_input_fn = classifier_utils.file_based_input_fn_builder(
            input_file=predict_file,
            seq_length=FLAGS.max_seq_length,
            is_training=False,
            drop_remainder=predict_drop_remainder,
            task_name=task_name,
            use_tpu=FLAGS.use_tpu,
            bsz=FLAGS.predict_batch_size)

        checkpoint_path = os.path.join(FLAGS.output_dir, "model.ckpt-best")
        result = estimator.predict(input_fn=predict_input_fn,
                                   checkpoint_path=checkpoint_path)

        output_predict_file = os.path.join(FLAGS.output_dir,
                                           "test_results.tsv")
        output_submit_file = os.path.join(FLAGS.output_dir,
                                          "submit_results.tsv")
        with tf.gfile.GFile(output_predict_file, "w") as pred_writer,\
            tf.gfile.GFile(output_submit_file, "w") as sub_writer:
            sub_writer.write("index" + "\t" + "prediction\n")
            num_written_lines = 0
            tf.logging.info("***** Predict results *****")
            for (i, (example, prediction)) in\
                enumerate(zip(predict_examples, result)):
                probabilities = prediction["probabilities"]
                if i >= num_actual_predict_examples:
                    break
                output_line = "\t".join(
                    str(class_probability)
                    for class_probability in probabilities) + "\n"
                pred_writer.write(output_line)

                if task_name != "sts-b":
                    actual_label = label_list[int(prediction["predictions"])]
                else:
                    actual_label = str(prediction["predictions"])
                sub_writer.write(example.guid + "\t" + actual_label + "\n")
                num_written_lines += 1
        assert num_written_lines == num_actual_predict_examples
Example #17
0
def main(_):
    tf.logging.set_verbosity(tf.logging.INFO)

    processors = {"race": race_utils.RaceProcessor}

    tokenization.validate_case_matches_checkpoint(FLAGS.do_lower_case,
                                                  FLAGS.init_checkpoint)

    if not FLAGS.do_train and not FLAGS.do_eval and not FLAGS.do_predict:
        raise ValueError(
            "At least one of `do_train`, `do_eval` or `do_predict' must be True."
        )

    albert_config = modeling.AlbertConfig.from_json_file(
        FLAGS.albert_config_file)
    albert_config.hidden_dropout_prob = FLAGS.albert_dropout_prob
    albert_config.attention_probs_dropout_prob = FLAGS.albert_dropout_prob

    if FLAGS.max_seq_length > albert_config.max_position_embeddings:
        raise ValueError(
            "Cannot use sequence length %d because the ALBERT model "
            "was only trained up to sequence length %d" %
            (FLAGS.max_seq_length, albert_config.max_position_embeddings))

    tf.gfile.MakeDirs(FLAGS.output_dir)

    task_name = FLAGS.task_name.lower()

    if task_name not in processors:
        raise ValueError("Task not found: %s" % (task_name))

    processor = processors[task_name](
        use_spm=True if FLAGS.spm_model_file else False,
        do_lower_case=FLAGS.do_lower_case,
        high_only=FLAGS.high_only,
        middle_only=FLAGS.middle_only)

    label_list = processor.get_labels()

    tokenizer = tokenization.FullTokenizer(vocab_file=FLAGS.vocab_file,
                                           do_lower_case=FLAGS.do_lower_case,
                                           spm_model_file=FLAGS.spm_model_file)

    # multiple gpus
    NUM_GPUS = FLAGS.num_gpu_cores if FLAGS.strategy_type == 'mirror' else 1
    using_customized_optimizer = None
    if NUM_GPUS > 1 and FLAGS.strategy_type == "mirror":
        os.environ["CUDA_VISIBLE_DEVICES"] = ",".join(
            [str(i) for i in list(range(NUM_GPUS))])
        # https://github.com/tensorflow/tensorflow/issues/21470#issuecomment-422506263
        strategy = tf.contrib.distribute.MirroredStrategy(
            num_gpus=NUM_GPUS,
            cross_device_ops=AllReduceCrossDeviceOps('nccl',
                                                     num_packs=NUM_GPUS),
        )
        using_customized_optimizer = True
        tf.logging.info('Use MirroredStrategy with %d devices.',
                        strategy.num_replicas_in_sync)
    else:
        strategy = tf.distribute.OneDeviceStrategy("GPU:0")
        using_customized_optimizer = False
        tf.logging.info('Single device mode.')

    tpu_cluster_resolver = None
    if FLAGS.use_tpu and FLAGS.tpu_name:
        tpu_cluster_resolver = contrib_cluster_resolver.TPUClusterResolver(
            FLAGS.tpu_name, zone=FLAGS.tpu_zone, project=FLAGS.gcp_project)

    is_per_host = contrib_tpu.InputPipelineConfig.PER_HOST_V2
    if FLAGS.do_train:
        iterations_per_loop = int(
            min(FLAGS.iterations_per_loop, FLAGS.save_checkpoints_steps))
    else:
        iterations_per_loop = FLAGS.iterations_per_loop
    run_config = contrib_tpu.RunConfig(
        cluster=tpu_cluster_resolver,
        master=FLAGS.master,
        model_dir=FLAGS.output_dir,
        save_checkpoints_steps=int(FLAGS.save_checkpoints_steps),
        keep_checkpoint_max=0,
        tpu_config=contrib_tpu.TPUConfig(
            iterations_per_loop=iterations_per_loop,
            num_shards=FLAGS.num_tpu_cores,
            per_host_input_for_training=is_per_host),
        train_distribute=strategy,
        eval_distribute=strategy,  #get error during evaluation
    )

    train_examples = None
    total_time = None
    if FLAGS.do_train:
        train_examples = processor.get_train_examples(FLAGS.data_dir)

    model_fn = race_utils.model_fn_builder(
        albert_config=albert_config,
        num_labels=len(label_list),
        init_checkpoint=FLAGS.init_checkpoint,
        learning_rate=FLAGS.learning_rate,
        num_train_steps=FLAGS.train_step,
        num_warmup_steps=FLAGS.warmup_step,
        use_tpu=FLAGS.use_tpu,
        use_one_hot_embeddings=FLAGS.use_tpu,
        max_seq_length=FLAGS.max_seq_length,
        dropout_prob=FLAGS.dropout_prob,
        customized=using_customized_optimizer)

    # If TPU is not available, this will fall back to normal Estimator on CPU
    # or GPU.
    if FLAGS.use_tpu and FLAGS.tpu_name:
        tf.logging.info("Use TPUEstimator")
        estimator = contrib_tpu.TPUEstimator(
            use_tpu=FLAGS.use_tpu,
            model_fn=model_fn,
            config=run_config,
            train_batch_size=FLAGS.train_batch_size,
            eval_batch_size=FLAGS.eval_batch_size,
            predict_batch_size=FLAGS.predict_batch_size)
    else:
        tf.logging.info("Use normal Estimator")
        estimator = Estimator(
            model_fn=model_fn,
            params={},
            config=run_config,
        )

    if FLAGS.do_train:
        if not tf.gfile.Exists(FLAGS.train_feature_file):
            race_utils.file_based_convert_examples_to_features(
                train_examples, label_list, FLAGS.max_seq_length, tokenizer,
                FLAGS.train_feature_file, FLAGS.max_qa_length)
        tf.logging.info("***** Running training *****")
        tf.logging.info("  Num examples = %d", len(train_examples))
        tf.logging.info("  Batch size = %d", FLAGS.train_batch_size)
        tf.logging.info("  Num steps = %d", FLAGS.train_step)
        train_input_fn = classifier_utils.file_based_input_fn_builder(
            input_file=FLAGS.train_feature_file,
            seq_length=FLAGS.max_seq_length,
            is_training=True,
            drop_remainder=True,
            task_name=task_name,
            use_tpu=FLAGS.use_tpu,
            bsz=FLAGS.train_batch_size,
            multiple=len(label_list))
        time_hist = TimeHistory()
        estimator.train(input_fn=train_input_fn, max_steps=FLAGS.train_step)
        total_time = sum(time_hist.times)

    if FLAGS.do_eval:
        eval_examples = processor.get_dev_examples(FLAGS.data_dir)
        num_actual_eval_examples = len(eval_examples)
        if FLAGS.use_tpu:
            # TPU requires a fixed batch size for all batches, therefore the number
            # of examples must be a multiple of the batch size, or else examples
            # will get dropped. So we pad with fake examples which are ignored
            # later on. These do NOT count towards the metric (all tf.metrics
            # support a per-instance weight, and these get a weight of 0.0).
            while len(eval_examples) % FLAGS.eval_batch_size != 0:
                eval_examples.append(classifier_utils.PaddingInputExample())

        if not tf.gfile.Exists(FLAGS.eval_feature_file):
            race_utils.file_based_convert_examples_to_features(
                eval_examples, label_list, FLAGS.max_seq_length, tokenizer,
                FLAGS.eval_feature_file, FLAGS.max_qa_length)

        tf.logging.info("***** Running evaluation *****")
        tf.logging.info("  Num examples = %d (%d actual, %d padding)",
                        len(eval_examples), num_actual_eval_examples,
                        len(eval_examples) - num_actual_eval_examples)
        tf.logging.info("  Batch size = %d", FLAGS.eval_batch_size)

        # This tells the estimator to run through the entire set.
        eval_steps = None
        # However, if running eval on the TPU, you will need to specify the
        # number of steps.
        if FLAGS.use_tpu:
            assert len(eval_examples) % FLAGS.eval_batch_size == 0
            eval_steps = int(len(eval_examples) // FLAGS.eval_batch_size)

        eval_drop_remainder = True if FLAGS.use_tpu else False
        eval_input_fn = classifier_utils.file_based_input_fn_builder(
            input_file=FLAGS.eval_feature_file,
            seq_length=FLAGS.max_seq_length,
            is_training=False,
            drop_remainder=eval_drop_remainder,
            task_name=task_name,
            use_tpu=FLAGS.use_tpu,
            bsz=FLAGS.eval_batch_size,
            multiple=len(label_list))

        def _find_valid_cands(curr_step):
            filenames = tf.gfile.ListDirectory(FLAGS.output_dir)
            candidates = []
            for filename in filenames:
                if filename.endswith(".index"):
                    ckpt_name = filename[:-6]
                    idx = ckpt_name.split("-")[-1]
                    if idx != "best" and int(idx) > curr_step:
                        candidates.append(filename)
            return candidates

        output_eval_file = os.path.join(FLAGS.output_dir, "eval_results.txt")
        checkpoint_path = os.path.join(FLAGS.output_dir, "model.ckpt-best")
        key_name = "eval_accuracy"
        if tf.gfile.Exists(checkpoint_path + ".index"):
            result = estimator.evaluate(input_fn=eval_input_fn,
                                        steps=eval_steps,
                                        checkpoint_path=checkpoint_path)
            best_perf = result[key_name]
            global_step = result["global_step"]
        else:
            global_step = -1
            best_perf = -1
            checkpoint_path = None
        writer = tf.gfile.GFile(output_eval_file, "w")
        avg_time_per_batch = np.mean(time_hist.times)
        writer.write("===== Hyperparameters =====\n")
        writer.write("Training batch size: {}\n".format(
            FLAGS.train_batch_size))
        writer.write("Max sequence length: {}\n".format(FLAGS.max_seq_length))
        writer.write("Max qa length: {}\n".format(FLAGS.max_qa_length))
        writer.write("Learning rate: {}\n".format(FLAGS.learning_rate))
        writer.write("Num of GPU cores: {}\n".format(NUM_GPUS))
        if FLAGS.do_train:
            avg_time_per_batch = np.mean(time_hist.times)
            writer.write("Total time: {}\n".format(total_time))
            writer.write("Speed: {}\n".format(FLAGS.train_batch_size *
                                              NUM_GPUS / avg_time_per_batch))
        if FLAGS.train_step and FLAGS.warmup_step:
            writer.write("Training steps: {}\n".format(FLAGS.train_step))
            writer.write("Warmup steps: {}\n".format(FLAGS.warmup_step))

        while global_step < FLAGS.train_step:
            steps_and_files = {}
            filenames = tf.gfile.ListDirectory(FLAGS.output_dir)
            for filename in filenames:
                if filename.endswith(".index"):
                    ckpt_name = filename[:-6]
                    cur_filename = os.path.join(FLAGS.output_dir, ckpt_name)
                    if cur_filename.split("-")[-1] == "best":
                        continue
                    gstep = int(cur_filename.split("-")[-1])
                    if gstep not in steps_and_files:
                        tf.logging.info(
                            "Add {} to eval list.".format(cur_filename))
                        steps_and_files[gstep] = cur_filename
            tf.logging.info("found {} files.".format(len(steps_and_files)))
            # steps_and_files = sorted(steps_and_files, key=lambda x: x[0])
            if not steps_and_files:
                tf.logging.info(
                    "found 0 file, global step: {}. Sleeping.".format(
                        global_step))
                time.sleep(1)
            else:
                for ele in sorted(steps_and_files.items()):
                    step, checkpoint_path = ele
                    if global_step >= step:
                        if len(_find_valid_cands(step)) > 1:
                            for ext in [
                                    "meta", "data-00000-of-00001", "index"
                            ]:
                                src_ckpt = checkpoint_path + ".{}".format(ext)
                                tf.logging.info("removing {}".format(src_ckpt))
                                tf.gfile.Remove(src_ckpt)
                        continue
                    result = estimator.evaluate(
                        input_fn=eval_input_fn,
                        steps=eval_steps,
                        checkpoint_path=checkpoint_path)
                    global_step = result["global_step"]
                    tf.logging.info("***** Eval results *****")
                    for key in sorted(result.keys()):
                        tf.logging.info("  %s = %s", key, str(result[key]))
                        writer.write("%s = %s\n" % (key, str(result[key])))
                    writer.write("best = {}\n".format(best_perf))
                    if result[key_name] > best_perf:
                        best_perf = result[key_name]
                        for ext in ["meta", "data-00000-of-00001", "index"]:
                            src_ckpt = checkpoint_path + ".{}".format(ext)
                            tgt_ckpt = checkpoint_path.rsplit(
                                "-", 1)[0] + "-best.{}".format(ext)
                            tf.logging.info("saving {} to {}".format(
                                src_ckpt, tgt_ckpt))
                            tf.gfile.Copy(src_ckpt, tgt_ckpt, overwrite=True)
                            writer.write("saved {} to {}\n".format(
                                src_ckpt, tgt_ckpt))

                    if len(_find_valid_cands(global_step)) > 1:
                        for ext in ["meta", "data-00000-of-00001", "index"]:
                            src_ckpt = checkpoint_path + ".{}".format(ext)
                            tf.logging.info("removing {}".format(src_ckpt))
                            tf.gfile.Remove(src_ckpt)
                    writer.write("=" * 50 + "\n")
        writer.close()
    if FLAGS.do_predict:
        predict_examples = processor.get_test_examples(FLAGS.data_dir)
        num_actual_predict_examples = len(predict_examples)
        if FLAGS.use_tpu:
            # TPU requires a fixed batch size for all batches, therefore the number
            # of examples must be a multiple of the batch size, or else examples
            # will get dropped. So we pad with fake examples which are ignored
            # later on.
            while len(predict_examples) % FLAGS.predict_batch_size != 0:
                predict_examples.append(classifier_utils.PaddingInputExample())
            assert len(predict_examples) % FLAGS.predict_batch_size == 0
            predict_steps = int(
                len(predict_examples) // FLAGS.predict_batch_size)

        predict_file = os.path.join(FLAGS.output_dir, "predict.tf_record")
        race_utils.file_based_convert_examples_to_features(
            predict_examples, label_list, FLAGS.max_seq_length, tokenizer,
            predict_file, FLAGS.max_qa_length)

        tf.logging.info("***** Running prediction*****")
        tf.logging.info("  Num examples = %d (%d actual, %d padding)",
                        len(predict_examples), num_actual_predict_examples,
                        len(predict_examples) - num_actual_predict_examples)
        tf.logging.info("  Batch size = %d", FLAGS.predict_batch_size)

        predict_drop_remainder = True if FLAGS.use_tpu else False
        predict_input_fn = classifier_utils.file_based_input_fn_builder(
            input_file=predict_file,
            seq_length=FLAGS.max_seq_length,
            is_training=False,
            drop_remainder=predict_drop_remainder,
            task_name=task_name,
            use_tpu=FLAGS.use_tpu,
            bsz=FLAGS.predict_batch_size,
            multiple=len(label_list))

        checkpoint_path = os.path.join(FLAGS.output_dir, "model.ckpt-best")
        result = estimator.evaluate(input_fn=predict_input_fn,
                                    steps=predict_steps,
                                    checkpoint_path=checkpoint_path)

        output_predict_file = os.path.join(FLAGS.output_dir,
                                           "predict_results.txt")
        with tf.gfile.GFile(output_predict_file, "w") as pred_writer:
            # num_written_lines = 0
            tf.logging.info("***** Predict results *****")
            pred_writer.write("***** Predict results *****\n")
            for key in sorted(result.keys()):
                tf.logging.info("  %s = %s", key, str(result[key]))
                pred_writer.write("%s = %s\n" % (key, str(result[key])))
            pred_writer.write("best = {}\n".format(best_perf))
Example #18
0
def _transformer(model, bert_class, xlnet_class, **kwargs):
    model = model.lower()
    if model not in _availability:
        raise Exception(
            'model not supported, please check supported models from malaya.similarity.available_transformer()'
        )

    check_file(PATH_SIMILARITY[model], S3_PATH_SIMILARITY[model], **kwargs)
    g = load_graph(PATH_SIMILARITY[model]['model'], **kwargs)

    path = PATH_SIMILARITY

    if model in ['albert', 'bert', 'tiny-albert', 'tiny-bert']:
        if model in ['bert', 'tiny-bert']:
            from malaya.transformers.bert import (
                _extract_attention_weights_import, )
            from malaya.transformers.bert import bert_num_layers

            tokenizer = sentencepiece_tokenizer_bert(path[model]['tokenizer'],
                                                     path[model]['vocab'])

        if model in ['albert', 'tiny-albert']:
            from malaya.transformers.albert import (
                _extract_attention_weights_import, )
            from malaya.transformers.albert import bert_num_layers
            from albert import tokenization

            tokenizer = tokenization.FullTokenizer(
                vocab_file=path[model]['vocab'],
                do_lower_case=False,
                spm_model_file=path[model]['tokenizer'],
            )

        return bert_class(
            X=g.get_tensor_by_name('import/Placeholder:0'),
            segment_ids=g.get_tensor_by_name('import/Placeholder_1:0'),
            input_masks=g.get_tensor_by_name('import/Placeholder_2:0'),
            logits=g.get_tensor_by_name('import/logits:0'),
            sess=generate_session(graph=g, **kwargs),
            tokenizer=tokenizer,
            label=['not similar', 'similar'],
        )

    if model in ['xlnet', 'alxlnet']:
        if model in ['xlnet']:
            from malaya.transformers.xlnet import (
                _extract_attention_weights_import, )
        if model in ['alxlnet']:
            from malaya.transformers.alxlnet import (
                _extract_attention_weights_import, )

        tokenizer = sentencepiece_tokenizer_xlnet(path[model]['tokenizer'])

        return xlnet_class(
            X=g.get_tensor_by_name('import/Placeholder:0'),
            segment_ids=g.get_tensor_by_name('import/Placeholder_1:0'),
            input_masks=g.get_tensor_by_name('import/Placeholder_2:0'),
            logits=g.get_tensor_by_name('import/logits:0'),
            sess=generate_session(graph=g, **kwargs),
            tokenizer=tokenizer,
            label=['not similar', 'similar'],
        )
Example #19
0
def main(_):
    tf.logging.set_verbosity(tf.logging.INFO)

    albert_config = modeling.AlbertConfig.from_json_file(
        FLAGS.albert_config_file)

    validate_flags_or_throw(albert_config)

    tf.gfile.MakeDirs(FLAGS.output_dir)

    tokenizer = tokenization.FullTokenizer(vocab_file=FLAGS.vocab_file,
                                           do_lower_case=FLAGS.do_lower_case,
                                           spm_model_file=FLAGS.spm_model_file)

    # multiple gpus
    NUM_GPUS = FLAGS.num_gpu_cores if FLAGS.strategy_type == 'mirror' else 1
    using_customized_optimizer = None
    if NUM_GPUS > 1 and FLAGS.strategy_type == "mirror":
        os.environ["CUDA_VISIBLE_DEVICES"] = ",".join(
            [str(i) for i in list(range(NUM_GPUS))])
        # https://github.com/tensorflow/tensorflow/issues/21470#issuecomment-422506263
        strategy = tf.contrib.distribute.MirroredStrategy(
            num_gpus=NUM_GPUS,
            cross_device_ops=AllReduceCrossDeviceOps('nccl',
                                                     num_packs=NUM_GPUS),
        )
        using_customized_optimizer = True
        tf.logging.info('Use MirroredStrategy with %d devices.',
                        strategy.num_replicas_in_sync)
    else:
        strategy = tf.distribute.OneDeviceStrategy("GPU:0")
        using_customized_optimizer = False
        tf.logging.info('Single device mode.')

    tpu_cluster_resolver = None
    if FLAGS.use_tpu and FLAGS.tpu_name:
        tpu_cluster_resolver = contrib_cluster_resolver.TPUClusterResolver(
            FLAGS.tpu_name, zone=FLAGS.tpu_zone, project=FLAGS.gcp_project)

    is_per_host = contrib_tpu.InputPipelineConfig.PER_HOST_V2
    if FLAGS.do_train:
        iterations_per_loop = int(
            min(FLAGS.iterations_per_loop, FLAGS.save_checkpoints_steps))
    else:
        iterations_per_loop = FLAGS.iterations_per_loop
    run_config = contrib_tpu.RunConfig(
        cluster=tpu_cluster_resolver,
        master=FLAGS.master,
        model_dir=FLAGS.output_dir,
        save_checkpoints_steps=FLAGS.save_checkpoints_steps,
        tpu_config=contrib_tpu.TPUConfig(
            iterations_per_loop=iterations_per_loop,
            num_shards=FLAGS.num_tpu_cores,
            per_host_input_for_training=is_per_host),
        train_distribute=strategy,
        eval_distribute=strategy,  #get error during evaluation
    )

    train_examples = None
    num_train_steps = None
    num_warmup_steps = None
    train_examples = squad_utils.read_squad_examples(
        input_file=FLAGS.train_file, is_training=True)
    num_train_steps = int(
        len(train_examples) / FLAGS.train_batch_size * FLAGS.num_train_epochs)
    if FLAGS.do_train:
        num_warmup_steps = int(num_train_steps * FLAGS.warmup_proportion)

        # Pre-shuffle the input to avoid having to make a very large shuffle
        # buffer in in the `input_fn`.
        rng = random.Random(12345)
        rng.shuffle(train_examples)

    model_fn = squad_utils.v2_model_fn_builder(
        albert_config=albert_config,
        init_checkpoint=FLAGS.init_checkpoint,
        learning_rate=FLAGS.learning_rate,
        num_train_steps=num_train_steps,
        num_warmup_steps=num_warmup_steps,
        use_tpu=FLAGS.use_tpu,
        use_one_hot_embeddings=FLAGS.use_tpu,
        max_seq_length=FLAGS.max_seq_length,
        start_n_top=FLAGS.start_n_top,
        end_n_top=FLAGS.end_n_top,
        dropout_prob=FLAGS.dropout_prob,
        customized=using_customized_optimizer,
        optimizer=FLAGS.optimizer)

    # If TPU is not available, this will fall back to normal Estimator on CPU
    # or GPU.
    if FLAGS.use_tpu and FLAGS.tpu_name:
        tf.logging.info("Use TPUEstimator")
        estimator = contrib_tpu.TPUEstimator(
            use_tpu=FLAGS.use_tpu,
            model_fn=model_fn,
            config=run_config,
            train_batch_size=FLAGS.train_batch_size,
            eval_batch_size=FLAGS.eval_batch_size,
            predict_batch_size=FLAGS.predict_batch_size)
    else:
        tf.logging.info("Use normal Estimator")
        estimator = Estimator(
            model_fn=model_fn,
            params={},
            config=run_config,
        )

    if FLAGS.do_train:
        # We write to a temporary file to avoid storing very large constant tensors
        # in memory.

        if not tf.gfile.Exists(FLAGS.train_feature_file):
            train_writer = squad_utils.FeatureWriter(filename=os.path.join(
                FLAGS.train_feature_file),
                                                     is_training=True)
            squad_utils.convert_examples_to_features(
                examples=train_examples,
                tokenizer=tokenizer,
                max_seq_length=FLAGS.max_seq_length,
                doc_stride=FLAGS.doc_stride,
                max_query_length=FLAGS.max_query_length,
                is_training=True,
                output_fn=train_writer.process_feature,
                do_lower_case=FLAGS.do_lower_case)
            train_writer.close()

        tf.logging.info("***** Running training *****")
        tf.logging.info("  Num orig examples = %d", len(train_examples))
        # tf.logging.info("  Num split examples = %d", train_writer.num_features)
        tf.logging.info(
            f"  Batch size = {FLAGS.train_batch_size} * {NUM_GPUS}")
        tf.logging.info("  Num steps = %d", num_train_steps)
        del train_examples

        train_input_fn = squad_utils.input_fn_builder(
            input_file=FLAGS.train_feature_file,
            seq_length=FLAGS.max_seq_length,
            is_training=True,
            drop_remainder=True,
            use_tpu=FLAGS.use_tpu,
            bsz=FLAGS.train_batch_size,
            is_v2=True)

        time_hist = TimeHistory()
        estimator.train(input_fn=train_input_fn, max_steps=num_train_steps)
        total_time = sum(time_hist.times)

    if FLAGS.do_predict:
        with tf.gfile.Open(FLAGS.predict_file) as predict_file:
            prediction_json = json.load(predict_file)["data"]
        eval_examples = squad_utils.read_squad_examples(
            input_file=FLAGS.predict_file, is_training=False)

        if (tf.gfile.Exists(FLAGS.predict_feature_file)
                and tf.gfile.Exists(FLAGS.predict_feature_left_file)):
            tf.logging.info("Loading eval features from {}".format(
                FLAGS.predict_feature_left_file))
            with tf.gfile.Open(FLAGS.predict_feature_left_file, "rb") as fin:
                eval_features = pickle.load(fin)
        else:
            eval_writer = squad_utils.FeatureWriter(
                filename=FLAGS.predict_feature_file, is_training=False)
            eval_features = []

            def append_feature(feature):
                eval_features.append(feature)
                eval_writer.process_feature(feature)

            squad_utils.convert_examples_to_features(
                examples=eval_examples,
                tokenizer=tokenizer,
                max_seq_length=FLAGS.max_seq_length,
                doc_stride=FLAGS.doc_stride,
                max_query_length=FLAGS.max_query_length,
                is_training=False,
                output_fn=append_feature,
                do_lower_case=FLAGS.do_lower_case)
            eval_writer.close()

            with tf.gfile.Open(FLAGS.predict_feature_left_file, "wb") as fout:
                pickle.dump(eval_features, fout)

        tf.logging.info("***** Running predictions *****")
        tf.logging.info("  Num orig examples = %d", len(eval_examples))
        tf.logging.info("  Num split examples = %d", len(eval_features))
        tf.logging.info("  Batch size = %d", FLAGS.predict_batch_size)

        predict_input_fn = squad_utils.input_fn_builder(
            input_file=FLAGS.predict_feature_file,
            seq_length=FLAGS.max_seq_length,
            is_training=False,
            drop_remainder=False,
            use_tpu=FLAGS.use_tpu,
            bsz=FLAGS.predict_batch_size,
            is_v2=True)

        def get_result(checkpoint):
            """Evaluate the checkpoint on SQuAD v2.0."""
            # If running eval on the TPU, you will need to specify the number of
            # steps.
            reader = tf.train.NewCheckpointReader(checkpoint)
            global_step = reader.get_tensor(tf.GraphKeys.GLOBAL_STEP)
            all_results = []
            for result in estimator.predict(predict_input_fn,
                                            yield_single_examples=True,
                                            checkpoint_path=checkpoint):
                if len(all_results) % 1000 == 0:
                    tf.logging.info("Processing example: %d" %
                                    (len(all_results)))
                unique_id = int(result["unique_ids"])
                start_top_log_probs = ([
                    float(x) for x in result["start_top_log_probs"].flat
                ])
                start_top_index = [
                    int(x) for x in result["start_top_index"].flat
                ]
                end_top_log_probs = ([
                    float(x) for x in result["end_top_log_probs"].flat
                ])
                end_top_index = [int(x) for x in result["end_top_index"].flat]

                cls_logits = float(result["cls_logits"].flat[0])
                all_results.append(
                    squad_utils.RawResultV2(
                        unique_id=unique_id,
                        start_top_log_probs=start_top_log_probs,
                        start_top_index=start_top_index,
                        end_top_log_probs=end_top_log_probs,
                        end_top_index=end_top_index,
                        cls_logits=cls_logits))

            output_prediction_file = os.path.join(FLAGS.output_dir,
                                                  "predictions.json")
            output_nbest_file = os.path.join(FLAGS.output_dir,
                                             "nbest_predictions.json")
            output_null_log_odds_file = os.path.join(FLAGS.output_dir,
                                                     "null_odds.json")

            result_dict = {}
            cls_dict = {}
            squad_utils.accumulate_predictions_v2(
                result_dict, cls_dict, eval_examples, eval_features,
                all_results, FLAGS.n_best_size, FLAGS.max_answer_length,
                FLAGS.start_n_top, FLAGS.end_n_top)

            return squad_utils.evaluate_v2(
                result_dict, cls_dict, prediction_json, eval_examples,
                eval_features, all_results, FLAGS.n_best_size,
                FLAGS.max_answer_length, output_prediction_file,
                output_nbest_file, output_null_log_odds_file), int(global_step)

        def _find_valid_cands(curr_step):
            filenames = tf.gfile.ListDirectory(FLAGS.output_dir)
            candidates = []
            for filename in filenames:
                if filename.endswith(".index"):
                    ckpt_name = filename[:-6]
                    idx = ckpt_name.split("-")[-1]
                    if idx != "best" and int(idx) > curr_step:
                        candidates.append(filename)
            return candidates

        output_eval_file = os.path.join(FLAGS.output_dir, "eval_results.txt")
        checkpoint_path = os.path.join(FLAGS.output_dir, "model.ckpt-best")
        key_name = "f1"
        writer = tf.gfile.GFile(output_eval_file, "w")

        avg_time_per_batch = np.mean(time_hist.times)
        writer.write("===== Hyperparameters =====\n")
        writer.write("Training batch size: {}\n".format(
            FLAGS.train_batch_size))
        writer.write("Max sequence length: {}\n".format(FLAGS.max_seq_length))
        writer.write("Learning rate: {}\n".format(FLAGS.learning_rate))
        writer.write("Num of GPU cores: {}\n".format(NUM_GPUS))
        if FLAGS.do_train:
            avg_time_per_batch = np.mean(time_hist.times)
            writer.write("Total time: {}\n".format(total_time))
            writer.write("Speed: {}\n".format(FLAGS.train_batch_size *
                                              NUM_GPUS / avg_time_per_batch))
        if num_train_steps and num_warmup_steps:
            writer.write("Training steps: {}\n".format(num_train_steps))
            writer.write("Warmup steps: {}\n".format(num_warmup_steps))

        if tf.gfile.Exists(checkpoint_path + ".index"):
            result = get_result(checkpoint_path)
            best_perf = result[0][key_name]
            global_step = result[1]
        else:
            global_step = -1
            best_perf = -1
            checkpoint_path = None
        while global_step < num_train_steps:
            steps_and_files = {}
            filenames = tf.gfile.ListDirectory(FLAGS.output_dir)
            for filename in filenames:
                if filename.endswith(".index"):
                    ckpt_name = filename[:-6]
                    cur_filename = os.path.join(FLAGS.output_dir, ckpt_name)
                    if cur_filename.split("-")[-1] == "best":
                        continue
                    gstep = int(cur_filename.split("-")[-1])
                    if gstep not in steps_and_files:
                        tf.logging.info(
                            "Add {} to eval list.".format(cur_filename))
                        steps_and_files[gstep] = cur_filename
            tf.logging.info("found {} files.".format(len(steps_and_files)))
            if not steps_and_files:
                tf.logging.info(
                    "found 0 file, global step: {}. Sleeping.".format(
                        global_step))
                time.sleep(1)
            else:
                for ele in sorted(steps_and_files.items()):
                    step, checkpoint_path = ele
                    if global_step >= step:
                        if len(_find_valid_cands(step)) > 1:
                            for ext in [
                                    "meta", "data-00000-of-00001", "index"
                            ]:
                                src_ckpt = checkpoint_path + ".{}".format(ext)
                                tf.logging.info("removing {}".format(src_ckpt))
                                tf.gfile.Remove(src_ckpt)
                        continue
                    result, global_step = get_result(checkpoint_path)
                    tf.logging.info("***** Eval results *****")
                    for key in sorted(result.keys()):
                        tf.logging.info("  %s = %s", key, str(result[key]))
                        writer.write("%s = %s\n" % (key, str(result[key])))
                    if result[key_name] > best_perf:
                        best_perf = result[key_name]
                        for ext in ["meta", "data-00000-of-00001", "index"]:
                            src_ckpt = checkpoint_path + ".{}".format(ext)
                            tgt_ckpt = checkpoint_path.rsplit(
                                "-", 1)[0] + "-best.{}".format(ext)
                            tf.logging.info("saving {} to {}".format(
                                src_ckpt, tgt_ckpt))
                            tf.gfile.Copy(src_ckpt, tgt_ckpt, overwrite=True)
                            writer.write("saved {} to {}\n".format(
                                src_ckpt, tgt_ckpt))
                    writer.write("best {} = {}\n".format(key_name, best_perf))
                    tf.logging.info("  best {} = {}\n".format(
                        key_name, best_perf))

                    if len(_find_valid_cands(global_step)) > 2:
                        for ext in ["meta", "data-00000-of-00001", "index"]:
                            src_ckpt = checkpoint_path + ".{}".format(ext)
                            tf.logging.info("removing {}".format(src_ckpt))
                            tf.gfile.Remove(src_ckpt)
                    writer.write("=" * 50 + "\n")

        checkpoint_path = os.path.join(FLAGS.output_dir, "model.ckpt-best")
        result, global_step = get_result(checkpoint_path)
        tf.logging.info("***** Final Eval results *****")
        tf.logging.info(f"num_gpu_cores =  {NUM_GPUS}")
        writer.write("===== Evuations =====\n")
        for key in sorted(result.keys()):
            tf.logging.info("  %s = %s", key, str(result[key]))
            writer.write("%s = %s\n" % (key, str(result[key])))
        writer.write("best perf happened at step: {}".format(global_step))
Example #20
0
def save_as_record(path, data, vocab_path, max_length, fields):
    path_tag_size = [40, 10, 100]
    max_ner_size = 64
    events = {
        'EquityFreeze': 0,
        'EquityRepurchase': 1,
        'EquityUnderweight': 2,
        'EquityOverweight': 3,
        'EquityPledge': 4
    }
    events_fields = {
        'EquityFreeze': [
            'EquityHolder', 'FrozeShares', 'LegalInstitution',
            'TotalHoldingShares', 'TotalHoldingRatio', 'StartDate', 'EndDate',
            'UnfrozeDate'
        ],
        'EquityRepurchase': [
            'CompanyName', 'HighestTradingPrice', 'LowestTradingPrice',
            'RepurchasedShares', 'ClosingDate', 'RepurchaseAmount'
        ],
        'EquityUnderweight': [
            'EquityHolder', 'TradedShares', 'StartDate', 'EndDate',
            'LaterHoldingShares', 'AveragePrice'
        ],
        'EquityOverweight': [
            'EquityHolder', 'TradedShares', 'StartDate', 'EndDate',
            'LaterHoldingShares', 'AveragePrice'
        ],
        'EquityPledge': [
            'Pledger', 'PledgedShares', 'Pledgee', 'TotalHoldingShares',
            'TotalHoldingRatio', 'TotalPledgedShares', 'StartDate', 'EndDate',
            'ReleasedDate'
        ]
    }

    train_writer = tf.python_io.TFRecordWriter(path)
    vocab = tokenization.FullTokenizer(vocab_path)
    for x in tqdm(data):
        # 处理原文
        sentences, sentences_mask = process(x['sentences'], vocab, max_length)
        # 处理ner 标签
        # 空白的ner_tag
        ner_tag = np.zeros(max_length, dtype=np.int32)
        flag = 0
        for w in x['ann_mspan2dranges'].keys():
            field = w
            tag = x['ann_mspan2guess_field'][field]
            indexs = x['ann_mspan2dranges'][field]
            for index in indexs:
                if index[2] > max_length[1] - 1:
                    flag = 1
                    break
                ner_tag[index[0]][index[1] + 1] = fields['%s_B' %
                                                         str(tag).upper()]
                for i in range(index[1] + 1, index[2]):
                    ner_tag[index[0]][i + 1] = fields['%s_I' %
                                                      str(tag).upper()]
        if flag == 1:
            continue

        # 生成路径tag
        # 维度分别是路径数,字段数,候选值
        path_tag = np.zeros(path_tag_size, dtype=np.int32) + (-1)

        # 存储完整路径
        path_entity_list = np.zeros(path_tag_size[:2], dtype=np.int32) + (-1)
        path_event_type = np.zeros([path_tag_size[0]], dtype=np.int32) + (-1)
        event_tag = [0 for i in range(5)]

        # 辅助数据:实体index
        ners = [k for k in x['ann_mspan2dranges'].keys()]
        ner_index = []
        ner_list_index = [0]
        for k in ners:
            ner_index.extend(x['ann_mspan2dranges'][k])
            # ner_index[-1][1] += 1
            # ner_index[-1][2] += 1
            ner_list_index.append(ner_list_index[-1] +
                                  len(x['ann_mspan2dranges'][k]))

        for k in ner_index:
            k[1] += 1
            k[2] += 1

        for i in range(max_ner_size - len(ner_index)):
            ner_index.append([-1, -1, -1])

        for i in range(max_ner_size - len(ner_list_index)):
            ner_list_index.append(-1)

        event_tree = {}
        for e in x['recguid_eventname_eventdict_list']:
            # 处理事件tag
            event_tag[events[e[1]]] = 1
            if events[e[1]] not in event_tree.keys():
                event_tree[events[e[1]]] = {}
            et = event_tree[events[e[1]]]

            # 合并相同前缀
            for f in events_fields[e[1]]:
                value = e[2][f]
                if value == None:
                    value = 'NA'
                if value not in et.keys():
                    et[value] = {}
                et = et[value]

        # 创建路径tag
        path_type = np.zeros([10], dtype=np.int32) + (-1)
        paths = []
        for index, k in enumerate(event_tree.keys()):
            start = len(paths)
            paths.extend(get_path(event_tree[k]))
            path_type[start:len(paths)] = k
            for index2, path in enumerate(paths[start:]):
                cache = event_tree[k][path[0]]
                # 跳过第一个节点
                if ners.index(path[0]) != 'NA':
                    path_entity_list[start + index2,
                                     0] = ners.index(path[0]) + 1
                else:
                    path_entity_list[start + index2, 0] = 0
                for i, p in enumerate(path[1:]):
                    tag = np.array(
                        [0 if f not in cache.keys() else 1 for f in ners],
                        dtype=np.int32)
                    tag = np.concatenate([
                        tag,
                        np.zeros([path_tag_size[-1] - tag.size],
                                 dtype=np.int32)
                    ],
                                         axis=0)
                    path_tag[start + index2, i + 1, :] = tag
                    if p != 'NA':
                        path_entity_list[start + index2,
                                         i + 1] = ners.index(p) + 1
                    else:
                        path_entity_list[start + index2, i + 1] = 0
                    cache = cache[p]
                path_event_type[start + index2] = k
            tag = np.array(
                [0 if f not in [c[0] for c in paths] else 1 for f in ners],
                dtype=np.int32)
            tag = np.concatenate([
                tag,
                np.zeros([path_tag_size[-1] - tag.size], dtype=np.int32)
            ],
                                 axis=0)
            path_tag[start:len(paths), 0, :] = tag

        if len(ner_list_index) != max_ner_size:
            continue

        if len(ner_index) != max_ner_size:
            continue

        # # test
        # def select_path(path_tag, path_num, path_event_type, path_entity_list):
        #     path_index = np.random.randint(0, path_num[0], size=1, dtype=np.int32)[0]
        #     return path_tag[path_index], path_index, path_event_type[path_index], path_entity_list[path_index]
        #
        # path_tag, path_index, path_event_type, path_entity_list = select_path(path_tag, [len(paths)], path_event_type,
        #                                                                       path_entity_list)
        #
        # # 去除padding的ner_index
        # def select_nert_index(path_entity_list):
        #     size2 = path_entity_list.argmin(axis=0)
        #     return path_entity_list[:size2]
        #
        # path_entity_list = select_nert_index(path_entity_list)

        features = tf.train.Features(
            feature={
                'sentences': get_byte_feature(sentences),  # 原始文本
                'sentences_mask': get_byte_feature(sentences_mask),  # 原始文本长度
                'event_tag': get_byte_feature(event_tag),  # 事件标签
                'ner_tag': get_byte_feature(ner_tag),  # 实体标签
                'path_tag': get_byte_feature(path_tag),  # 路径标签
                'ner_list_index': get_byte_feature(ner_list_index),  #
                'ner_index': get_byte_feature(ner_index),  #
                'path_event_type': get_int_feature(path_event_type),
                'path_num': get_int_feature([len(paths)]),
                'path_entity_list': get_byte_feature(path_entity_list)
                # 'mask1': tf.train.Feature(int64_list=tf.train.Int64List(value=mask1)),
            })

        example = tf.train.Example(features=features)
        train_writer.write(example.SerializeToString())
    train_writer.close()
Example #21
0
def transformer(model: str = 'bert', **kwargs):
    """
    Load Transformer sentiment model.

    Parameters
    ----------
    model : str, optional (default='bert')
        Model architecture supported. Allowed values:

        * ``'bert'`` - BERT architecture from google.
        * ``'tiny-bert'`` - BERT architecture from google with smaller parameters.
        * ``'albert'`` - ALBERT architecture from google.
        * ``'tiny-albert'`` - ALBERT architecture from google with smaller parameters.
        * ``'xlnet'`` - XLNET architecture from google.
        * ``'alxlnet'`` - XLNET architecture from google + Malaya.

    Returns
    -------
    BERT : malaya._models._bert_model.BINARY_BERT class
    """

    model = model.lower()
    if model not in _availability:
        raise Exception(
            'model not supported, please check supported models from malaya.similarity.available_transformer_model()'
        )

    check_file(PATH_SIMILARITY[model], S3_PATH_SIMILARITY[model], **kwargs)
    g = load_graph(PATH_SIMILARITY[model]['model'])

    path = PATH_SIMILARITY

    if model in ['albert', 'bert', 'tiny-albert', 'tiny-bert']:
        if model in ['bert', 'tiny-bert']:
            from malaya.transformers.bert import (
                _extract_attention_weights_import, )
            from malaya.transformers.bert import bert_num_layers

            tokenizer = sentencepiece_tokenizer_bert(path[model]['tokenizer'],
                                                     path[model]['vocab'])

        if model in ['albert', 'tiny-albert']:
            from malaya.transformers.albert import (
                _extract_attention_weights_import, )
            from malaya.transformers.albert import bert_num_layers
            from albert import tokenization

            tokenizer = tokenization.FullTokenizer(
                vocab_file=path[model]['vocab'],
                do_lower_case=False,
                spm_model_file=path[model]['tokenizer'],
            )

        return SIAMESE_BERT(
            X=g.get_tensor_by_name('import/Placeholder:0'),
            segment_ids=g.get_tensor_by_name('import/Placeholder_1:0'),
            input_masks=g.get_tensor_by_name('import/Placeholder_2:0'),
            logits=g.get_tensor_by_name('import/logits:0'),
            sess=generate_session(graph=g),
            tokenizer=tokenizer,
            label=['not similar', 'similar'],
        )

    if model in ['xlnet', 'alxlnet']:
        if model in ['xlnet']:
            from malaya.transformers.xlnet import (
                _extract_attention_weights_import, )
        if model in ['alxlnet']:
            from malaya.transformers.alxlnet import (
                _extract_attention_weights_import, )

        tokenizer = sentencepiece_tokenizer_xlnet(path[model]['tokenizer'])

        return SIAMESE_XLNET(
            X=g.get_tensor_by_name('import/Placeholder:0'),
            segment_ids=g.get_tensor_by_name('import/Placeholder_1:0'),
            input_masks=g.get_tensor_by_name('import/Placeholder_2:0'),
            logits=g.get_tensor_by_name('import/logits:0'),
            sess=generate_session(graph=g),
            tokenizer=tokenizer,
            label=['not similar', 'similar'],
        )
def main(_):
    tf.logging.set_verbosity(tf.logging.INFO)

    layer_indexes = [int(x) for x in FLAGS.layers.split(",")]

    bert_config = modeling.AlbertConfig.from_json_file(FLAGS.bert_config_file)

    tokenizer = tokenization.FullTokenizer(
        spm_model_file=FLAGS.vocab_file, do_lower_case=FLAGS.do_lower_case)

    is_per_host = tf.contrib.tpu.InputPipelineConfig.PER_HOST_V2
    run_config = tf.contrib.tpu.RunConfig(
        master=FLAGS.master,
        tpu_config=tf.contrib.tpu.TPUConfig(
            num_shards=FLAGS.num_tpu_cores,
            per_host_input_for_training=is_per_host))

    # examples = read_examples(FLAGS.input_file)
    json_examples = []
    for x in ['test', 'train', 'dev']:
        with open(os.path.join(FLAGS.input_file, x + '.english.jsonlines')) as f:
            json_examples.extend((json.loads(jsonline) for jsonline in f.readlines()))

    orig_examples = []
    bert_examples = []
    for i, json_e in enumerate(json_examples):
        e = process_example(json_e, i, should_filter_embedded_mentions=True)
        orig_examples.append(e)
        bert_examples.append(e.bertify(tokenizer))

    model_fn = model_fn_builder(
        bert_config=bert_config,
        init_checkpoint=FLAGS.init_checkpoint,
        layer_indexes=layer_indexes,
        use_tpu=FLAGS.use_tpu,
        use_one_hot_embeddings=FLAGS.use_one_hot_embeddings)

    # If TPU is not available, this will fall back to normal Estimator on CPU
    # or GPU.
    estimator = tf.contrib.tpu.TPUEstimator(
        use_tpu=FLAGS.use_tpu,
        model_fn=model_fn,
        config=run_config,
        predict_batch_size=FLAGS.batch_size)

    input_fn = input_fn_builder(
        examples=bert_examples, window_size=FLAGS.window_size, stride=FLAGS.stride, tokenizer=tokenizer)

    writer = h5py.File(FLAGS.output_file, 'w')
    with tqdm(total=sum(len(e.tokens) for e in orig_examples)) as t:
        for result in estimator.predict(input_fn, yield_single_examples=True):
            document_index = int(result["unique_ids"])
            bert_example = bert_examples[document_index]
            orig_example = orig_examples[document_index]
            file_key = bert_example.doc_key.replace('/', ':')

            t.update(n=(result['extract_indices'] >= 0).sum())

            for output_index, bert_token_index in enumerate(result['extract_indices']):
                if bert_token_index < 0:
                    continue

                token_index = bert_example.bert_to_orig_map[bert_token_index]
                sentence_index, token_index = orig_example.unravel_token_index(token_index)

                dataset_key ="{}/{}".format(file_key, sentence_index)
                if dataset_key not in writer:
                    writer.create_dataset(dataset_key,
                                          (len(orig_example.sentence_tokens[sentence_index]), bert_config.hidden_size, len(layer_indexes)),
                                          dtype=np.float32)

                dset = writer[dataset_key]
                for j, layer_index in enumerate(layer_indexes):
                    layer_output = result["layer_output_%d" % j]
                    dset[token_index, :, j] = layer_output[output_index]
    writer.close()
Example #23
0
def transformer(
    path,
    s3_path,
    class_name,
    label,
    model='bert',
    quantized=False,
    **kwargs,
):
    check_file(path[model], s3_path[model], quantized=quantized, **kwargs)
    if quantized:
        model_path = 'quantized'
    else:
        model_path = 'model'
    g = load_graph(path[model][model_path], **kwargs)

    if len(label) > 2 or class_name == 'relevancy':
        if model in ['albert', 'bert', 'tiny-albert', 'tiny-bert']:
            selected_class = MULTICLASS_BERT
            selected_node = 'import/dense/BiasAdd:0'
        if model in ['xlnet', 'alxlnet']:
            selected_class = MULTICLASS_XLNET
            selected_node = 'import/transpose_3:0'

    else:
        if model in ['albert', 'bert', 'tiny-albert', 'tiny-bert']:
            selected_class = BINARY_BERT
            selected_node = 'import/dense/BiasAdd:0'
        if model in ['xlnet', 'alxlnet']:
            selected_class = BINARY_XLNET
            selected_node = 'import/transpose_3:0'

    if model in ['albert', 'bert', 'tiny-albert', 'tiny-bert']:
        if model in ['bert', 'tiny-bert']:
            from malaya.transformers.bert import (
                _extract_attention_weights_import, )
            from malaya.transformers.bert import bert_num_layers

            tokenizer = sentencepiece_tokenizer_bert(path[model]['tokenizer'],
                                                     path[model]['vocab'])
        if model in ['albert', 'tiny-albert']:
            from malaya.transformers.albert import (
                _extract_attention_weights_import, )
            from malaya.transformers.albert import bert_num_layers
            from albert import tokenization

            tokenizer = tokenization.FullTokenizer(
                vocab_file=path[model]['vocab'],
                do_lower_case=False,
                spm_model_file=path[model]['tokenizer'],
            )

        return selected_class(
            X=g.get_tensor_by_name('import/Placeholder:0'),
            segment_ids=None,
            input_masks=g.get_tensor_by_name('import/Placeholder_1:0'),
            logits=g.get_tensor_by_name('import/logits:0'),
            logits_seq=g.get_tensor_by_name('import/logits_seq:0'),
            vectorizer=g.get_tensor_by_name(selected_node),
            sess=generate_session(graph=g, **kwargs),
            tokenizer=tokenizer,
            label=label,
            attns=_extract_attention_weights_import(bert_num_layers[model], g),
            class_name=class_name,
        )

    if model in ['xlnet', 'alxlnet']:
        if model in ['xlnet']:
            from malaya.transformers.xlnet import (
                _extract_attention_weights_import, )
        if model in ['alxlnet']:
            from malaya.transformers.alxlnet import (
                _extract_attention_weights_import, )

        tokenizer = sentencepiece_tokenizer_xlnet(path[model]['tokenizer'])

        return selected_class(
            X=g.get_tensor_by_name('import/Placeholder:0'),
            segment_ids=g.get_tensor_by_name('import/Placeholder_1:0'),
            input_masks=g.get_tensor_by_name('import/Placeholder_2:0'),
            logits=g.get_tensor_by_name('import/logits:0'),
            logits_seq=g.get_tensor_by_name('import/logits_seq:0'),
            vectorizer=g.get_tensor_by_name(selected_node),
            sess=generate_session(graph=g, **kwargs),
            tokenizer=tokenizer,
            label=label,
            attns=_extract_attention_weights_import(g),
            class_name=class_name,
        )
Example #24
0
    def trans_to_features(self, example):
        """
        将输入转化为索引表示
        :param example: 输入
        :return:
        """
        tokenizer = tokenization.FullTokenizer(vocab_file=self.vocab_path, do_lower_case=True)
        features = []
        unique_id = 1000000000

        query_tokens = tokenizer.tokenize(example['question'])
        # 给定query一个最大长度来控制query的长度
        if len(query_tokens) > self.query_length:
            query_tokens = query_tokens[: self.query_length]

        # 主要是针对context构造索引,之前我们将中文,标点符号,空格,一连串的数字,英文单词分割存储在doc_tokens中
        # 但在bert的分词器中会将一连串的数字,中文,英文等分割成子词,也就是说经过bert的分词之后得到的tokens和之前
        # 获得的doc_tokens是不一样的,因此我们仍需要对start和end position从doc_tokens中的位置映射到当前tokens的位置
        tok_to_orig_index = []  # 存储未分词的token的索引,但长度和下面的相等
        orig_to_tok_index = []  # 存储分词后的token的索引,但索引不是连续的,会存在跳跃的情况
        all_doc_tokens = []  # 存储分词后的token,理论上长度是要大于all_tokens的

        for (i, token) in enumerate(example['doc_tokens']):
            sub_tokens = tokenizer.tokenize(token)
            # orig_to_tok_index的长度等于doc_tokens,里面每个值存储的是doc_tokens中的token在all_doc_tokens中的起止索引值
            # 用来将在all_token中的start和end转移到all_doc_tokens中
            orig_to_tok_index.append([len(all_doc_tokens)])
            for sub_token in sub_tokens:
                # tok_to_orig_index的长度等于all_doc_tokens, 里面会有重复的值
                tok_to_orig_index.append(i)
                all_doc_tokens.append(sub_token)
            orig_to_tok_index[-1].append(len(all_doc_tokens) - 1)

        # The -3 accounts for [CLS], [SEP] and [SEP]
        max_tokens_for_doc = self.max_length - len(query_tokens) - 3

        doc_spans = []
        _DocSpan = collections.namedtuple("DocSpan", ["start", "length"])

        # 在使用bert的时候,一般会将最大的序列长度控制在512,因此对于长度大于最大长度的context,我们需要将其分成多个片段
        # 采用滑窗的方式,滑窗大小是小于最大长度的,因此分割的片段之间是存在重复的子片段。
        start_offset = 0  # 截取的片段的起始位置
        while start_offset < len(all_doc_tokens):
            length = len(all_doc_tokens) - start_offset

            # 当长度超标,需要使用滑窗
            if length > max_tokens_for_doc:
                length = max_tokens_for_doc
            doc_spans.append(_DocSpan(start=start_offset, length=length))
            if start_offset + length == len(all_doc_tokens):  # 当length < max_len时,该条件成立
                break
            start_offset += min(length, self.doc_stride)

        # 组合query和context的片段成一个序列输入到bert中
        for (doc_span_index, doc_span) in enumerate(doc_spans):
            tokens = []
            token_to_orig_map = {}
            # 因为片段之间会存在重复的子片段,但是子片段中的token在不同的片段中的重要性是不一样的,
            # 在这里根据上下文的数量来决定token的重要性,在之后预测时对于出现在两个片段中的token,只取重要性高的片段
            # 中的token的分数作为该token的分数
            token_is_max_context = {}
            segment_ids = []
            tokens.append("[CLS]")
            segment_ids.append(0)
            for token in query_tokens:
                tokens.append(token)
                segment_ids.append(0)
            tokens.append("[SEP]")
            segment_ids.append(0)

            for i in range(doc_span.length):
                split_token_index = doc_span.start + i
                token_to_orig_map[len(tokens)] = tok_to_orig_index[
                    split_token_index]  # 映射当前span组成的句子对的索引到原始token的索引

                # 在利用滑窗分割多个span时会存在有的词出现在两个span中,但最后统计的时候,我们只能选择一个span,因此
                # 作者根据该词上下文词的数量构建了一个分数,取分数最高的那个span
                is_max_context = self._check_is_max_context(doc_spans, doc_span_index, split_token_index)
                token_is_max_context[len(tokens)] = is_max_context
                tokens.append(all_doc_tokens[split_token_index])
                segment_ids.append(1)
            tokens.append("[SEP]")
            segment_ids.append(1)

            input_ids = tokenizer.convert_tokens_to_ids(tokens)

            # The mask has 1 for real tokens and 0 for padding tokens. Only real
            # tokens are attended to.
            input_mask = [1] * len(input_ids)

            # Zero-pad up to the sequence length.
            while len(input_ids) < self.max_length:
                input_ids.append(0)
                input_mask.append(0)
                segment_ids.append(0)

            assert len(input_ids) == self.max_length
            assert len(input_mask) == self.max_length
            assert len(segment_ids) == self.max_length

            features.append({'unique_id': unique_id,
                             'doc_span_index': doc_span_index,
                             'tokens': tokens,
                             'token_to_orig_map': token_to_orig_map,
                             'token_is_max_context': token_is_max_context,
                             'input_ids': input_ids,
                             'input_mask': input_mask,
                             'segment_ids': segment_ids,
                             'start_position': -1,
                             'end_position': -1})
            unique_id += 1
        return features